2025人工智能治理的未來:阿聯(lián)酋憲章和全球視野_第1頁
2025人工智能治理的未來:阿聯(lián)酋憲章和全球視野_第2頁
2025人工智能治理的未來:阿聯(lián)酋憲章和全球視野_第3頁
2025人工智能治理的未來:阿聯(lián)酋憲章和全球視野_第4頁
2025人工智能治理的未來:阿聯(lián)酋憲章和全球視野_第5頁
已閱讀5頁,還剩57頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

incollaborationwith

REPORT

TheFutureofAIGovernance

TheUAECharterandGlobalPerspectives

2

TableofContents

Topics

TheUAECharter:The12AIPrinciples6

KPMG’sTrustedAIFramework8

Principle1:StrengtheningHuman-MachineTies10

Principle2:Safety14

Principle3:AlgorithmicBias18

Principle4:DataPrivacy22

Principle5:Transparency26

Principle6:HumanOversight30

Principle7:GovernanceandAccountability34

Principle8:TechnologicalExcellence38

Principle9:HumanCommitment42

Principle10:PeacefulCoexistencewithAI46

Principle11:PromotingAIAwarenessforanInclusiveFuture50

Principle12:CommitmenttoTreatiesandApplicableLaws54

TableofContent3

Foreword

Werecognizethataclear,actionablesetofAIprinciples

formsthecornerstoneofethicalandresponsibleAI

development.Theseprinciplesarenotonlyessential

forbuildingpublictrustandensuringorganizational

accountability,butalsoforfosteringinclusiveinnovationthatbenefitscitizens,businesses,andgovernmentsalike.

Asglobalregulatoryframeworksevolved,suchastheEUAIActpassedin2024,groundedintheEuropeanCommission’sethicalguidelinesfortrustworthyAI,principles-basedgovernance

hasemergedasthefoundationalapproachtoAIoversight.

TheUAEhasdemonstratedregionalandgloballeadership

throughitsAIStrategy2031andthereleaseoftheUAEAI

CharterforthedevelopmentanduseofArtificialIntelligence,inJuly2024,whicharticulatestwelvekeyprinciplestoensureAIisdeployedsafely,equitably,andtransparently.

Thiswhitepaperoffersadetailedinterpretationofeachofthe12UAEAICharterprinciples,actionablerecommendations

forimplementationacrosstheAIlifecycle,mappedto

KPMG’sTrustedAIFramework,practicalinsightstosupportAIgovernance,riskmanagement,andregulatoryalignment,andablueprintforbuildingresilient,human-centricAI

systemsinalignmentwiththeUAE’snationalpriorities.

TheUAECharterplacesparticularemphasisonhuman

oversight,inclusivity,safety,andlegalcompliance—valuesthatresonatewithglobalAIethicsstandardslikethoseoutlined

byOECD,UNESCO,andtheEU.AsAIregulationbecomesmorestringent,organizationsthatproactivelyalignwiththese

principleswillbebetterpositionedtoleadresponsibly,mitigaterisks,andcapturethefullpotentialofAIinnovation.

Tomovebeyondaspirationalintent,organizationsmust

embedtheseprinciplesintooperationalreality.Thismeans

evolvingexistinggovernancemodelstosupportthedistinct

requirementsofAI—suchasdataprovenancetracking,modelaccountability,explainability,biasaudits,andhumanoversight.Governanceframeworksmustshiftfromstaticpoliciesto

adaptivecontrolsthatalignwiththefast-evolvingAIlifecycle.

147

EmbeddingtheUAEAICharterintoenterprise

governancealsoprovidesastrategicadvantage.Itsignalsreadinessforfuturecompliance,enablesrisk-awareinnovation,andensuresthatAI

deploymentsarenotonlylawfulbutalsoalignedwithpublicexpectationsandsocietalvalues.

Organizationsthatoperationalizetheseprinciplesearlywillbebetterequippedtomanageethicaldilemmas,respondtoregulatoryinquiries,andbuildlastingtrustwithusers,regulators,andthewidercommunity.

Proactivelyimplementingtheseprinciplesnot

onlyensuresregulatoryreadinessbutalso

deliversclearbusinessvalue.Organizations

thatembedresponsibleAIpracticesearlycan

accelerateinnovationwithconfidence,reduce

compliancecosts,andenhancetheirreputationastrustworthy,forward-thinkingleaders.

BybuildingAIsystemsthataretransparent,

inclusive,andhuman-centric,businessescan

unlocknewopportunities,gainstakeholdertrust,anddifferentiatethemselvesinanincreasingly

AI-driveneconomy.

Acrosstheglobe,jurisdictionssuchasthe

EuropeanUnion,Canada,theUnitedStates,

andSingaporearemovingswiftlytocodifyAIethicsintobindinglegislationandoperationalframeworks.ThissignalsaglobalshiftwhereAIgovernancewillnolongerbeoptional—butacorecomponentofdigitalcompetitivenessandenterpriseresilience.

5

TheUAECharter:

The12AIPrinciples

1.

StrengtheningHuman-MachineTies:

TheUAEaimstoenhancetheharmoniousandbeneficialrelationshipbetweenAIandhumans,ensuringthatallAIdevelopmentsprioritizehumanwell-beingandprogress.

2.

Safety:

TheUAEplacesgreatimportanceonsafety,ensuringthatallAIsystemscomplywiththehighestsafetystandards.Thecountryencourages

modifyingorremovingsystemsthatposerisks.

3.

AlgorithmicBias:

TheUAEaimstoaddressthechallengesposedbyAIalgorithmsregardingalgorithmicbias,contributingtoafairandequitableenvironmentfor

allcommunitymembers.Thispromotesresponsibledevelopmentof

AItechnologies,makingtheminclusiveandaccessibletoeveryone,

supportingdiversity,andrespectingindividualdifferences.Itensures

equaltechnologicalbenefitsandimprovesqualityoflifewithoutexclusionordiscrimination.

4.

DataPrivacy:

InlinewiththeUAE’sstanceonprivacyrights,whiledataisessentialforAIdevelopment,supportingandpromotinginnovationinAI,theprivacyofcommunitymembersremainsatoppriority.

5.

Transparency:

TheUAEseekstocreateaclearunderstandingofAIandhowsystemsoperateandmakedecisions,whichhelpsbuildtrust,enhanceresponsibility,and

promoteaccountabilityintheuseofthesetechnologies.

6.HumanOversight:

TheCharteremphasizestheirreplaceablevalueofhumanjudgmentandhumanoversightoverAI,aligningwithethicalvaluesandsocialstandardstocorrectanyerrorsorbiasesthatmayarise.

6WorldGovernmentsSummit

7

7.GovernanceandAccountability:

TheUAEadoptsaresponsibleandproactivestance,emphasizingthe

importanceofgovernanceandaccountabilityinAItoensurethetechnologyisusedethicallyandtransparently.

8.TechnologicalExcellence:

AIshouldbeabeaconofinnovation,reflectingtheUAE’svisionofdigital,technological,andscientificexcellence.TheUAEseeksgloballeadershipbyadoptingtechnologicalexcellenceinAItodriveinnovation,enhancecompetitiveness,andimprovequalityoflifethroughinnovativeand

effectivesolutionstocomplexchallenges,contributingtosustainableprogressbenefitingsocietyasawhole.

9.HumanCommitment:

HumancommitmentinAIreflectsthespiritoftheUAE,essentialfor

ensuringthatthedevelopmentofthistechnologyservesthepublicgood.Itfocusesonenhancinghumanwell-beingandprotectingfundamental

rights,emphasizingtheimportanceofplacinghumanvaluesattheheartoftechnologicalinnovationtoensureapositiveandlastingimpactonsociety.

10.PeacefulCoexistencewithAI:

PeacefulcoexistencewithAIiscrucialtoensuretechnologyenhancesthewell-beingandprogressofourcommunitieswithoutcompromisinghumansecurityorfundamentalrights.

11.PromotingAIAwarenessforanInclusiveFuture:

ItisessentialtocreateaninclusivefuturethatensureseveryonecanbenefitfromAIadvancements,guaranteeingequitableaccesstothistechnologyanditsadvantagesforallsegmentsofsociety.

12.CommitmenttoTreatiesandApplicableLaws:

TheUAEemphasizestheimportanceofcomplyingwithinternationaltreatiesandlocallawsinthedevelopmentanduseofAI.

KPMG’sTrustedAIFramework

Asartificialintelligencebecomesincreasinglyintegraltocritical

decisionsandeverydayoperations,KPMGdevelopeditsTrustedAI

Frameworktohelporganizationsnavigatethisevolvinglandscape.Theframeworkbringsstructure,accountability,andclaritytotheAIlifecycle,ensuringthatAI

systemsareethical,transparent,andalignedwithhumanvaluesfromstrategytodeployment.

BuiltonKPMG’sglobalexperience

acrossindustries,theframework

isfoundedontencoreprinciples.

Theseprinciplesincludefairnessand

transparency,whichensureAIsystems

areinclusiveandunderstandable;

explainabilityandaccountability,

whichfosterhumanoversightand

responsibility;andprivacy,security,andsafety,whichprotectbothindividuals

andsystems.Additionally,theframeworkemphasizesdataintegrityandreliabilityforconsistentAIperformance,as

wellassustainabilitytoensureAI

advancementscontributetobroadersocialandenvironmentalgoals.

8

TheUAEAICharterreflectsasimilarcommitmenttoresponsibleAIdevelopment,expressinganationalvisionthroughtwelveguidingprinciplesthataligncloselywiththoseinKPMG’sTrustedAIFramework.ThetablebelowillustrateshoweachUAEAIprinciplemapstooneormoreof

KPMG’sTrustedAIprinciples:

UAEAIPrincipleAlignedKPMGGlobalTrustedAIPrinciple(s)

1.StrengtheningHuman-MachineTiesExplainability,Fairness,Accountability

2.

Safety

Safety,Reliability,Security

3.

AlgorithmicBias

Fairness,Transparency,DataIntegrity

Privacy,DataIntegrity

4.DataPrivacy

Transparency,Explainability

5.Transparency

6.HumanOversight

Accountability,Explainability

7.

8.

TechnologicalExcellence

Reliability,Sustainability

9.

HumanCommitment

Fairness,Sustainability,Accountability

10.

PeacefulCoexistencewithAI

Safety,Security,Fairness

11.

PromotingAIAwarenessforanInclusiveFuture

Fairness,Explainability

12.CommitmenttoTreatiesandApplicableLawsAccountability,Privacy,DataIntegrity

Accountability,Transparency,DataIntegrity

GovernanceandAccountability

ThisclosealignmentbetweentheUAEAICharterandKPMG’sTrustedAIFrameworkprovidesastrongfoundationforaction.TheTrustedAIprincipleshavealreadybeenoperationalizedthroughdefinedmethodologiesacrosstheAIlifecycle—spanningstrategyanddesign,dataenablement,modeldevelopment,testingandevaluation,anddeploymentandmonitoring.Buildingonthisprovenfoundation,thesamestructuredapproachhasbeenappliedinthiswhitepapertotheUAE’stwelveAIprinciples.Foreach,practicalstepsareoutlinedtohelp

organizationsembedethical,human-centricAIpracticesandturnprinciplesintotangibleoutcomes.

9

Principle1

Strengthening

Human-MachineTies

TheUAEaimstoenhancetheharmoniousandbeneficial

relationshipbetweenAIand

humans,ensuringthatallAI

developmentsprioritizehumanwell-beingandprogress.

10

UnderstandingthePrincipleinReal-WorldTerms

ThisprincipleaimstoensurethatAIsystemsenhanceandaugmenthumancapabilities,empowering

humanbeingstoexceedtheirpotentialbycreatingsmarter,moreinclusivesolutions.AIshouldalign

withethicalprinciples,respectinghumandignity,

rights,andvalues.Ultimately,theUAEaimstofosteranenvironmentwherehumansandAIcollaboratetoimprovequalityoflife,boostproductivity,anddrivesocietalprogress.

Real-worldexamples:

?HealthcareAI:AIsystemsusedinhealthcaretoassistdoctorsindiagnosingdiseasesmoreaccuratelyandefficiently,ultimatelyimprovingpatientoutcomes.

?SmartCities:AI-driventechnologiesintegratedintourbanplanningtoimproveinfrastructure,optimizetrafficflow,andenhancethequalityoflifeforresidents.

EmbeddingThisPrincipleintoAIGovernance

Tostrengthenhuman-machineties,focuson

developingAIsystemsthataugmenthuman

capabilities,enhancewell-being,anddrivepositive

outcomesforemployees,customers,andsociety.

EnsurethatyourAIinitiativesalignwithbestpracticesandthoughtfullyconsidertheirbroaderimpacton

humanvalues,dignity,andrights,whilealsoreflectingtheculturalandsocietalvaluesoftheUAEthroughouteverystageofdevelopmentandimplementation.

Considerincorporatinghuman-in-the-loop

decision-makingtofurtherreinforcethehuman-AI

relationship,ensuringmeaningfuloversight,trust,andaccountability.

11

Principle1

BestPracticesandMethodologies

StrategyandDesign

?Human-CentricDesign:DesignAIsystemsto

augmenthumancapabilitiesbycontinuously

gatheringdiversefeedbackandusingittorefineandenhanceAI’simpact.

?EthicalAIGoals:SetclearethicalguidelinesforAIdevelopmentthatprioritizehumanwell-

beingandaddresspotentialnegativeimpacts,ensuringalignmentwithbothglobalstandardsandUAE’sculturalvalues.

?Human-in-the-LoopIntegration:Considerembeddinghuman-in-the-loopmechanismsearlytostrengthendecision-making,ensureaccountabilityandalignAIsystemswithcorehumanvalues.

DataEnablement

?DataSensitivity:Buildtrustbyensuringdata

collectionandprocessingrespectshuman

privacyanddignity,ensuringtheresponsibleuseofpersonalandsensitivedata.

?Well-beingMetrics:Considerfactorssuchas

well-being,safety,anduserexperiencewhen

evaluatingthedatausedfortrainingAImodels.

?DiverseDataRepresentation:Usedatasetsthatreflectdiversehumanexperiences,ensuring

AIsystemscanservethebroadspectrumofsocietalneeds.

ModelDevelopment

?Human-AICollaborationFeatures:DevelopAI

systemsthatenhancehumancapabilitiesby

offeringinsights,andprovidingsupport,withoutreplacinghumandecision-making.

?TransparentAlgorithms:Buildmodelsthat

allowhumanstoeasilyunderstand,trust,andcollaboratewithAIsystems.Transparencyhelpsensurehumanoversightismaintained.

?BiasReduction:EnsureAImodelsarefree

frombiasesthatmayharmhumanprogress,includingensuringequitabletreatmentacrossdiversegroupsandpreservingsocietalvalues.

TestingandEvaluation

?HumanImpactAssessment:Assessthe

potentialpositiveandnegativeimpactsofAIsystemsdevelopedonhumanwell-being,

ensuringtheoutcomesarealignedwiththeintendedbenefits.

?UserFeedback:Incorporatefeedbackfromuserstofine-tuneAIsystems,ensuringtheyare

relevanttohumanneedsandprogress.

DeploymentandMonitoring

?ContinuousCollaboration:Maintainactive

collaborationwithhumanusersand

stakeholderstoensurethatdeployedAIsystemsremainbeneficialandenhancehumanprogress.

?MonitorAIforHumanImpact:Trackthe

long-termeffectsofAIonsociety,ensuringAIsystemscontinuetoprioritizeandenhancehumanwell-being.

?AdaptationtoHumanNeeds:ContinuouslyadaptAItechnologiestomeettheevolvingneedsandvaluesofhumanusers,especiallyassocietal

contextschange.

12

ExtendingthePrincipletoAgenticAISystems

AgenticAIsystemsmustbedesignedto

complement,notreplace,humanroles.They

shouldenhancehumandecision-makingand

productivitythroughcontextualawarenessand

feedbackmechanisms.Ensuringintuitivehuman

interactionandtransparencywillhelppreserve

trust.Organizationsmustprioritizeuserexperienceinagent-AIinterfaces.Emotionalandcognitive

impactonusersshouldbemonitoredandimprovedovertime.

KeyTools,Techniquesand

FurtherReadingToolsandTechniques:

?Human-CenteredAIDesignFrameworks

?Human-AICollaborationToolkits(e.g.MicrosoftCopilot,SalesforceEinstein)

?UXResearchandCognitiveLoadTestingtools(e.g.OptimalWorkshop)

?KPMGTrustedAIFramework

?KPMGTrustedAIRiskandControlMatrix(RCM)

FurtherReading:

?StanfordHAI:Human-AICollaborationStudies

?HarvardBerkmanKleinCenter:EthicsofAugmentation

?Microsoft:TheFutureComputed–AIandHumanValues

Principle2

Safety

TheUAEplacesgreat

importanceonsafety,ensuringthatallAIsystemscomplywiththehighestsafetystandards.Thecountryencourages

modifyingorremovingsystemsthatposerisks.

14

UnderstandingthePrincipleinReal-WorldTerms

AIsafetyreferstoensuringthatAIsystemsfunctionasintended,withoutcausingharmtoindividuals,

businesses,orsociety.Thisincludestechnical

robustness,riskmitigation,andincorporatingfail-

safestopreventoraddressunintendedconsequencesorfailures.TheEUAIActexemplifiesthisapproach

bymandatingstringentsafetystandardsforhigh-

riskAIapplications.PrioritizingsafetyisessentialtominimizingrisksandmaintainingbothoperationalcontinuityandpublictrustintheUAE.

Real-worldexamples:

?AutonomousVehicles:AI-drivencarsfailingtorecognizepedestriansinlowvisibilityconditions,leadingtoaccidentsandregulatoryscrutiny.

?HealthcareAI:DiagnosticAImisinterpreting

medicalimages,leadingtoincorrecttreatmentsandpotentialliabilityrisks.

EmbeddingThisPrincipleintoAIGovernance

EnsuringAIsafetyrequiresastructuredapproach—fromriskassessmentstocontinuoustestingand

fail-safemechanisms.ToolslikeKPMG’sTrusted

AIRiskFrameworksupportthisprocessbyofferingastructuredmethodologytoidentify,assess,and

mitigateAI-relatedrisks,includingthosetiedto

safety,inalignmentwithstandardssuchasISO

42001andtheEUAIAct.Combinedwithastrong

AIgovernanceframework,thesetoolshelpensuresafetymeasuresremaineffective,transparent,andalignedwithbothlocalandglobalbestpractices.Byembeddingsafetybestpracticesintoeverystageofdevelopment,organizationscanenhancereliability,maintaincompliance,andbuildtrust.

15

Principle2

BestPracticesandMethodologies

StrategyandDesign

?SafetyGoalsandMetrics:EstablishclearsafetygoalsandmetricsforAIinitiatives,focusingonreliability,resilience,transparency,andsecurity.ToolslikeKPMG’sAImetricscanmeasure

performanceandensureethicalalignment.

?RiskIdentification:Definesafetyrisks

associatedwiththeAIsystemsandestablishprotocolsforriskmitigation.

?StakeholderConsultation:Engageregulators,industryexperts,andend-userstoanticipatesafetyconcernsbeforedevelopment.

?Fail-SafeDesign:Ensurethatthedesignof

AIsystemshasclearoverridemechanismstopreventharmincaseoffailure.Incorporate

fallbackmechanisms,monitoring,andhuman-in-the-loop.

DataEnablement

?DataIntegrityChecks:Validatetrainingdataforaccuracy,completeness,andconsistencytopreventAIfailures.

?BiasandAnomalyDetection:IdentifybiasesthatcouldleadtounsafeAIbehavior,suchasmisclassificationinhealthcareorautonomoussystems.

?SimulationandStressTestingData:TrainAImodelsonvariedscenarios,includingedgecases,toensurerobustnessinreal-world

applications.

ModelDevelopment

?Safety-ConsciousAlgorithms:Implement

algorithmsthatprioritizesafety,incorporating

guardrailsandconstraintstopreventharmfuldecisions.

?Fail-SafeMechanisms:Embedfail-safe

mechanismslikehuman-in-the-loopandlogginginthefinaldesign.

?ExplainabilityandTransparency:EnsurethatAIdecisionscanbeunderstoodandauditedtoidentifypotentialsafetyrisksbefore

deployment.

TestingandEvaluation

?AdversarialTesting:IdentifyweakpointsintheAIsystembytestingagainstpotentialfailure

pointsandestablishcorrectivemeasuresbeforedeployment.

?TestingforEdgeCases:EvaluateAIperformanceunderextremeconditions(e.g.lowvisibility

forself-drivingcarsorunpredictablemarketfluctuationsinfinance).

?SafetyBenchmarking:Defineandmeasure

safetyperformanceagainstindustrystandards.

DeploymentandMonitoring

?ContinuousSafetyMonitoring:Regularly

auditAIsystemspost-deploymenttodetectanomaliesorfailures.

?IncidentResponsePlans:EstablishclearescalationprotocolsforAImalfunctionstoensurequickremediation.

?RegulatoryComplianceReporting:Document

andcommunicatesafetymeasureswithinthe

organizationtodemonstrateadherencetosafetystandards.

ExtendingthePrincipletoAgenticAISystems

AgenticAIintroducesdynamicdecision-making,

whichrequiresreal-timeriskdetectionand

mitigationcapabilities.Safetyprotocolsmustbe

embeddednotjustincode,butalsoinhowagentsinteractwithsystemsandpeople.Fail-safesand

escalationpathstohumansupervisorsareessential.Simulationtestingforadversarialorunintended

agentbehaviormustbeprioritized.Organizationsshouldtrackagentactionstoensureaccountability.

KeyTools,Techniquesand

FurtherReadingToolsandTechniques:

?AdversarialTestingFrameworks(e.g.CleverHans,Foolbox)

?FormalVerificationTools(e.g.TLA+,Z3)

?BayesianNetworks,MonteCarloDropout

?RedTeamingandSimulationLabs

?KPMGTrustedAIFramework

?KPMGTrustedAIRiskandControlMatrix(RCM)

FurtherReading:

?NISTAIRiskManagementFramework

?OpenAI’sSystemSafetyPractices

?EUAIAct:SafetyProvisionsforHigh-RiskSystems

Principle3

AlgorithmicBias

TheUAEaimstoaddressthechallengesposedby

AIalgorithmsregarding

algorithmicbias,contributingtoafairandequitable

environmentforallcommunitymembers.Thispromotes

responsibledevelopmentof

AItechnologies,makingtheminclusiveandaccessibleto

everyone,supportingdiversity,andrespectingindividual

differences.Itensuresequal

technologicalbenefitsand

improvesqualityoflifewithoutexclusionordiscrimination.

18

UnderstandingthePrincipleinReal-WorldTerms

Inpractice,algorithmicbiasoccurswhenAI

systemsmakedecisionsthatunintentionallyfavorordisadvantagecertaingroupsbasedonfactorslikegender,ethnicity,age,orsocioeconomicstatus.Thiscanstemfrombiasedtrainingdata,flawedmodelassumptions,oralackofdiverserepresentationindevelopment.Addressingbiasiscriticaltobuildingtrust,ensuringfairness,andmitigatingfinancial,

legal,andreputationalrisks.

Real-worldexamples:

?HiringSystems:AIsystemsrejectingfemale

candidatesbasedonbiasedtrainingdataderivedfrommale-dominatedindustries,exposingthecompanytodiscriminationclaimsorregulatorypenalties.

?LoanApprovals:AI-basedcreditsystemsrejectingloanapplicantsbasedonhistoricaldiscriminatorypractices,potentiallyviolatingfairlendinglaws.

EmbeddingThisPrincipleintoAIGovernance

Toeffectivelyaddressalgorithmicbiasinyour

AIsystems,embedfairnessintoeveryphaseof

development.Thisincludesmakingproactivedesignchoices,usingrepresentativeandbalanceddata,andconductingcontinuoustestingtoensureequitable

outcomes.EffectiveAIgovernance,supportedbya

strongframework,shouldbewovenintoeachstagetoensureaccountability,transparency,andcompliancewithethicalandlocalregulatorystandards.Bydoingso,organizationscantranslatetheprincipleof

fairnessintoactionable,impactfulstepsthatdrive

responsibleAIdevelopmentthatalignswiththeUAE’srequirements.

19

Principle3

BestPracticesandMethodologies

StrategyandDesign

?DefineFairnessObjectives:Clearlyoutline

fairnessgoalswithmetricsforeachAIinitiative,

identifyingpotentialbiasesandensuring

thattheneedsofdiversestakeholdergroupsarerepresented.Thisshouldbeguidedand

alignedwithyourorganization’sAIgovernanceframework.

?InclusiveDesign:Involvediverseteams—

rangingfromethiciststoaffectedcommunity

members—duringthedesignphasetoidentifyandaddresspossiblesourcesofbiasbeforetheyemerge.

?AdoptExplainableAI(XAI):EnsuretransparencyinhowAImodelsmakedecisionsby

implementingexplainableAIframeworksthatallowstakeholderstounderstandandauditAIoutputs.

DataEnablement

?EnsureRepresentativeness:Makesuredatasetsaccuratelyrepresentdiversedemographics(age,gender,ethnicity,socioeconomicstatus,etc.),

particularlyinareaslikehiring,healthcare,andfinance.

?BiasAudits:Regularlyperformauditsontrainingdatasetstoidentifyandmitigatehistoricalandsocietalbiases,includingdirectbiases,proxy

biases,samplingbiases,andmeasurementbiases.

?DataLabeling:Improvethequalityandaccuracyofdatalabelingtopreventsubjectiveorbiasedannotations.Ensurethatdatalabelsreflectthediversityofthepopulationbeingrepresented.

ModelDevelopment

?BiasDetectionDuringModelDesign:ScreenAImodelsforpotentialproxybiases—variables

likezipcodesorincomelevelsthatcould

inadvertentlyreflectsensitiveattributessuchasraceorgender.

?Fairness-AwareAlgorithms:Usefairness-

enhancingalgorithmsthatcanidentifyand

correctbiasesbyadjustingforimbalancesinthemodel’spredictionsoroutcomes.

?DocumentModelChoices:Documentthe

rationalebehindkeydecisionsmadeduring

modeldevelopment,includingtheselectionoffeaturesandalgorithms,toensuretransparencyandaccountability.

TestingandEvaluation

?ThresholdSetting:Beforedeployment,define

acceptablefairnessthresholdsthatalignwith

thefairnessgoalsandmetricssetattheideationstage.

?ImpactTesting:TestthefullytrainedmodelsforbiasagainstthefairnessthresholdsandevaluatehowtheAIsystem’soutcomesdifferacross

demographicsandadjustasnecessarytoensureequitableresults.

DeploymentandMonitoring

?OngoingMonitoring:ContinuouslymonitortheperformanceofAIsystemspost-deploymenttoensurefairnessandalignmentwiththe

governanceframework.Ensurethesystemadaptstoevolvingsocietalnormsand

expectations.

20

?FeedbackMechanisms:Establishmechanismsthatallowusersandstakeholderstoreport

biasedoutcomesorissues.

?PeriodicReporting:Regularlypublishbias

impacttestingreports,allowingbothinterna

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論