版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
incollaborationwith
REPORT
TheFutureofAIGovernance
TheUAECharterandGlobalPerspectives
2
TableofContents
Topics
TheUAECharter:The12AIPrinciples6
KPMG’sTrustedAIFramework8
Principle1:StrengtheningHuman-MachineTies10
Principle2:Safety14
Principle3:AlgorithmicBias18
Principle4:DataPrivacy22
Principle5:Transparency26
Principle6:HumanOversight30
Principle7:GovernanceandAccountability34
Principle8:TechnologicalExcellence38
Principle9:HumanCommitment42
Principle10:PeacefulCoexistencewithAI46
Principle11:PromotingAIAwarenessforanInclusiveFuture50
Principle12:CommitmenttoTreatiesandApplicableLaws54
TableofContent3
Foreword
Werecognizethataclear,actionablesetofAIprinciples
formsthecornerstoneofethicalandresponsibleAI
development.Theseprinciplesarenotonlyessential
forbuildingpublictrustandensuringorganizational
accountability,butalsoforfosteringinclusiveinnovationthatbenefitscitizens,businesses,andgovernmentsalike.
Asglobalregulatoryframeworksevolved,suchastheEUAIActpassedin2024,groundedintheEuropeanCommission’sethicalguidelinesfortrustworthyAI,principles-basedgovernance
hasemergedasthefoundationalapproachtoAIoversight.
TheUAEhasdemonstratedregionalandgloballeadership
throughitsAIStrategy2031andthereleaseoftheUAEAI
CharterforthedevelopmentanduseofArtificialIntelligence,inJuly2024,whicharticulatestwelvekeyprinciplestoensureAIisdeployedsafely,equitably,andtransparently.
Thiswhitepaperoffersadetailedinterpretationofeachofthe12UAEAICharterprinciples,actionablerecommendations
forimplementationacrosstheAIlifecycle,mappedto
KPMG’sTrustedAIFramework,practicalinsightstosupportAIgovernance,riskmanagement,andregulatoryalignment,andablueprintforbuildingresilient,human-centricAI
systemsinalignmentwiththeUAE’snationalpriorities.
TheUAECharterplacesparticularemphasisonhuman
oversight,inclusivity,safety,andlegalcompliance—valuesthatresonatewithglobalAIethicsstandardslikethoseoutlined
byOECD,UNESCO,andtheEU.AsAIregulationbecomesmorestringent,organizationsthatproactivelyalignwiththese
principleswillbebetterpositionedtoleadresponsibly,mitigaterisks,andcapturethefullpotentialofAIinnovation.
Tomovebeyondaspirationalintent,organizationsmust
embedtheseprinciplesintooperationalreality.Thismeans
evolvingexistinggovernancemodelstosupportthedistinct
requirementsofAI—suchasdataprovenancetracking,modelaccountability,explainability,biasaudits,andhumanoversight.Governanceframeworksmustshiftfromstaticpoliciesto
adaptivecontrolsthatalignwiththefast-evolvingAIlifecycle.
147
EmbeddingtheUAEAICharterintoenterprise
governancealsoprovidesastrategicadvantage.Itsignalsreadinessforfuturecompliance,enablesrisk-awareinnovation,andensuresthatAI
deploymentsarenotonlylawfulbutalsoalignedwithpublicexpectationsandsocietalvalues.
Organizationsthatoperationalizetheseprinciplesearlywillbebetterequippedtomanageethicaldilemmas,respondtoregulatoryinquiries,andbuildlastingtrustwithusers,regulators,andthewidercommunity.
Proactivelyimplementingtheseprinciplesnot
onlyensuresregulatoryreadinessbutalso
deliversclearbusinessvalue.Organizations
thatembedresponsibleAIpracticesearlycan
accelerateinnovationwithconfidence,reduce
compliancecosts,andenhancetheirreputationastrustworthy,forward-thinkingleaders.
BybuildingAIsystemsthataretransparent,
inclusive,andhuman-centric,businessescan
unlocknewopportunities,gainstakeholdertrust,anddifferentiatethemselvesinanincreasingly
AI-driveneconomy.
Acrosstheglobe,jurisdictionssuchasthe
EuropeanUnion,Canada,theUnitedStates,
andSingaporearemovingswiftlytocodifyAIethicsintobindinglegislationandoperationalframeworks.ThissignalsaglobalshiftwhereAIgovernancewillnolongerbeoptional—butacorecomponentofdigitalcompetitivenessandenterpriseresilience.
5
TheUAECharter:
The12AIPrinciples
1.
StrengtheningHuman-MachineTies:
TheUAEaimstoenhancetheharmoniousandbeneficialrelationshipbetweenAIandhumans,ensuringthatallAIdevelopmentsprioritizehumanwell-beingandprogress.
2.
Safety:
TheUAEplacesgreatimportanceonsafety,ensuringthatallAIsystemscomplywiththehighestsafetystandards.Thecountryencourages
modifyingorremovingsystemsthatposerisks.
△
3.
AlgorithmicBias:
TheUAEaimstoaddressthechallengesposedbyAIalgorithmsregardingalgorithmicbias,contributingtoafairandequitableenvironmentfor
allcommunitymembers.Thispromotesresponsibledevelopmentof
AItechnologies,makingtheminclusiveandaccessibletoeveryone,
supportingdiversity,andrespectingindividualdifferences.Itensures
equaltechnologicalbenefitsandimprovesqualityoflifewithoutexclusionordiscrimination.
4.
DataPrivacy:
InlinewiththeUAE’sstanceonprivacyrights,whiledataisessentialforAIdevelopment,supportingandpromotinginnovationinAI,theprivacyofcommunitymembersremainsatoppriority.
5.
Transparency:
TheUAEseekstocreateaclearunderstandingofAIandhowsystemsoperateandmakedecisions,whichhelpsbuildtrust,enhanceresponsibility,and
promoteaccountabilityintheuseofthesetechnologies.
6.HumanOversight:
TheCharteremphasizestheirreplaceablevalueofhumanjudgmentandhumanoversightoverAI,aligningwithethicalvaluesandsocialstandardstocorrectanyerrorsorbiasesthatmayarise.
6WorldGovernmentsSummit
7
7.GovernanceandAccountability:
TheUAEadoptsaresponsibleandproactivestance,emphasizingthe
importanceofgovernanceandaccountabilityinAItoensurethetechnologyisusedethicallyandtransparently.
8.TechnologicalExcellence:
AIshouldbeabeaconofinnovation,reflectingtheUAE’svisionofdigital,technological,andscientificexcellence.TheUAEseeksgloballeadershipbyadoptingtechnologicalexcellenceinAItodriveinnovation,enhancecompetitiveness,andimprovequalityoflifethroughinnovativeand
effectivesolutionstocomplexchallenges,contributingtosustainableprogressbenefitingsocietyasawhole.
9.HumanCommitment:
HumancommitmentinAIreflectsthespiritoftheUAE,essentialfor
ensuringthatthedevelopmentofthistechnologyservesthepublicgood.Itfocusesonenhancinghumanwell-beingandprotectingfundamental
rights,emphasizingtheimportanceofplacinghumanvaluesattheheartoftechnologicalinnovationtoensureapositiveandlastingimpactonsociety.
10.PeacefulCoexistencewithAI:
PeacefulcoexistencewithAIiscrucialtoensuretechnologyenhancesthewell-beingandprogressofourcommunitieswithoutcompromisinghumansecurityorfundamentalrights.
11.PromotingAIAwarenessforanInclusiveFuture:
ItisessentialtocreateaninclusivefuturethatensureseveryonecanbenefitfromAIadvancements,guaranteeingequitableaccesstothistechnologyanditsadvantagesforallsegmentsofsociety.
12.CommitmenttoTreatiesandApplicableLaws:
TheUAEemphasizestheimportanceofcomplyingwithinternationaltreatiesandlocallawsinthedevelopmentanduseofAI.
KPMG’sTrustedAIFramework
Asartificialintelligencebecomesincreasinglyintegraltocritical
decisionsandeverydayoperations,KPMGdevelopeditsTrustedAI
Frameworktohelporganizationsnavigatethisevolvinglandscape.Theframeworkbringsstructure,accountability,andclaritytotheAIlifecycle,ensuringthatAI
systemsareethical,transparent,andalignedwithhumanvaluesfromstrategytodeployment.
BuiltonKPMG’sglobalexperience
acrossindustries,theframework
isfoundedontencoreprinciples.
Theseprinciplesincludefairnessand
transparency,whichensureAIsystems
areinclusiveandunderstandable;
explainabilityandaccountability,
whichfosterhumanoversightand
responsibility;andprivacy,security,andsafety,whichprotectbothindividuals
andsystems.Additionally,theframeworkemphasizesdataintegrityandreliabilityforconsistentAIperformance,as
wellassustainabilitytoensureAI
advancementscontributetobroadersocialandenvironmentalgoals.
8
TheUAEAICharterreflectsasimilarcommitmenttoresponsibleAIdevelopment,expressinganationalvisionthroughtwelveguidingprinciplesthataligncloselywiththoseinKPMG’sTrustedAIFramework.ThetablebelowillustrateshoweachUAEAIprinciplemapstooneormoreof
KPMG’sTrustedAIprinciples:
UAEAIPrincipleAlignedKPMGGlobalTrustedAIPrinciple(s)
1.StrengtheningHuman-MachineTiesExplainability,Fairness,Accountability
2.
Safety
Safety,Reliability,Security
3.
AlgorithmicBias
Fairness,Transparency,DataIntegrity
Privacy,DataIntegrity
4.DataPrivacy
Transparency,Explainability
5.Transparency
6.HumanOversight
Accountability,Explainability
7.
8.
TechnologicalExcellence
Reliability,Sustainability
9.
HumanCommitment
Fairness,Sustainability,Accountability
10.
PeacefulCoexistencewithAI
Safety,Security,Fairness
11.
PromotingAIAwarenessforanInclusiveFuture
Fairness,Explainability
12.CommitmenttoTreatiesandApplicableLawsAccountability,Privacy,DataIntegrity
Accountability,Transparency,DataIntegrity
GovernanceandAccountability
ThisclosealignmentbetweentheUAEAICharterandKPMG’sTrustedAIFrameworkprovidesastrongfoundationforaction.TheTrustedAIprincipleshavealreadybeenoperationalizedthroughdefinedmethodologiesacrosstheAIlifecycle—spanningstrategyanddesign,dataenablement,modeldevelopment,testingandevaluation,anddeploymentandmonitoring.Buildingonthisprovenfoundation,thesamestructuredapproachhasbeenappliedinthiswhitepapertotheUAE’stwelveAIprinciples.Foreach,practicalstepsareoutlinedtohelp
organizationsembedethical,human-centricAIpracticesandturnprinciplesintotangibleoutcomes.
9
Principle1
Strengthening
Human-MachineTies
TheUAEaimstoenhancetheharmoniousandbeneficial
relationshipbetweenAIand
humans,ensuringthatallAI
developmentsprioritizehumanwell-beingandprogress.
10
UnderstandingthePrincipleinReal-WorldTerms
ThisprincipleaimstoensurethatAIsystemsenhanceandaugmenthumancapabilities,empowering
humanbeingstoexceedtheirpotentialbycreatingsmarter,moreinclusivesolutions.AIshouldalign
withethicalprinciples,respectinghumandignity,
rights,andvalues.Ultimately,theUAEaimstofosteranenvironmentwherehumansandAIcollaboratetoimprovequalityoflife,boostproductivity,anddrivesocietalprogress.
Real-worldexamples:
?HealthcareAI:AIsystemsusedinhealthcaretoassistdoctorsindiagnosingdiseasesmoreaccuratelyandefficiently,ultimatelyimprovingpatientoutcomes.
?SmartCities:AI-driventechnologiesintegratedintourbanplanningtoimproveinfrastructure,optimizetrafficflow,andenhancethequalityoflifeforresidents.
EmbeddingThisPrincipleintoAIGovernance
Tostrengthenhuman-machineties,focuson
developingAIsystemsthataugmenthuman
capabilities,enhancewell-being,anddrivepositive
outcomesforemployees,customers,andsociety.
EnsurethatyourAIinitiativesalignwithbestpracticesandthoughtfullyconsidertheirbroaderimpacton
humanvalues,dignity,andrights,whilealsoreflectingtheculturalandsocietalvaluesoftheUAEthroughouteverystageofdevelopmentandimplementation.
Considerincorporatinghuman-in-the-loop
decision-makingtofurtherreinforcethehuman-AI
relationship,ensuringmeaningfuloversight,trust,andaccountability.
11
Principle1
BestPracticesandMethodologies
StrategyandDesign
?Human-CentricDesign:DesignAIsystemsto
augmenthumancapabilitiesbycontinuously
gatheringdiversefeedbackandusingittorefineandenhanceAI’simpact.
?EthicalAIGoals:SetclearethicalguidelinesforAIdevelopmentthatprioritizehumanwell-
beingandaddresspotentialnegativeimpacts,ensuringalignmentwithbothglobalstandardsandUAE’sculturalvalues.
?Human-in-the-LoopIntegration:Considerembeddinghuman-in-the-loopmechanismsearlytostrengthendecision-making,ensureaccountabilityandalignAIsystemswithcorehumanvalues.
DataEnablement
?DataSensitivity:Buildtrustbyensuringdata
collectionandprocessingrespectshuman
privacyanddignity,ensuringtheresponsibleuseofpersonalandsensitivedata.
?Well-beingMetrics:Considerfactorssuchas
well-being,safety,anduserexperiencewhen
evaluatingthedatausedfortrainingAImodels.
?DiverseDataRepresentation:Usedatasetsthatreflectdiversehumanexperiences,ensuring
AIsystemscanservethebroadspectrumofsocietalneeds.
ModelDevelopment
?Human-AICollaborationFeatures:DevelopAI
systemsthatenhancehumancapabilitiesby
offeringinsights,andprovidingsupport,withoutreplacinghumandecision-making.
?TransparentAlgorithms:Buildmodelsthat
allowhumanstoeasilyunderstand,trust,andcollaboratewithAIsystems.Transparencyhelpsensurehumanoversightismaintained.
?BiasReduction:EnsureAImodelsarefree
frombiasesthatmayharmhumanprogress,includingensuringequitabletreatmentacrossdiversegroupsandpreservingsocietalvalues.
TestingandEvaluation
?HumanImpactAssessment:Assessthe
potentialpositiveandnegativeimpactsofAIsystemsdevelopedonhumanwell-being,
ensuringtheoutcomesarealignedwiththeintendedbenefits.
?UserFeedback:Incorporatefeedbackfromuserstofine-tuneAIsystems,ensuringtheyare
relevanttohumanneedsandprogress.
DeploymentandMonitoring
?ContinuousCollaboration:Maintainactive
collaborationwithhumanusersand
stakeholderstoensurethatdeployedAIsystemsremainbeneficialandenhancehumanprogress.
?MonitorAIforHumanImpact:Trackthe
long-termeffectsofAIonsociety,ensuringAIsystemscontinuetoprioritizeandenhancehumanwell-being.
?AdaptationtoHumanNeeds:ContinuouslyadaptAItechnologiestomeettheevolvingneedsandvaluesofhumanusers,especiallyassocietal
contextschange.
12
ExtendingthePrincipletoAgenticAISystems
AgenticAIsystemsmustbedesignedto
complement,notreplace,humanroles.They
shouldenhancehumandecision-makingand
productivitythroughcontextualawarenessand
feedbackmechanisms.Ensuringintuitivehuman
interactionandtransparencywillhelppreserve
trust.Organizationsmustprioritizeuserexperienceinagent-AIinterfaces.Emotionalandcognitive
impactonusersshouldbemonitoredandimprovedovertime.
KeyTools,Techniquesand
FurtherReadingToolsandTechniques:
?Human-CenteredAIDesignFrameworks
?Human-AICollaborationToolkits(e.g.MicrosoftCopilot,SalesforceEinstein)
?UXResearchandCognitiveLoadTestingtools(e.g.OptimalWorkshop)
?KPMGTrustedAIFramework
?KPMGTrustedAIRiskandControlMatrix(RCM)
FurtherReading:
?StanfordHAI:Human-AICollaborationStudies
?HarvardBerkmanKleinCenter:EthicsofAugmentation
?Microsoft:TheFutureComputed–AIandHumanValues
Principle2
Safety
TheUAEplacesgreat
importanceonsafety,ensuringthatallAIsystemscomplywiththehighestsafetystandards.Thecountryencourages
modifyingorremovingsystemsthatposerisks.
14
UnderstandingthePrincipleinReal-WorldTerms
AIsafetyreferstoensuringthatAIsystemsfunctionasintended,withoutcausingharmtoindividuals,
businesses,orsociety.Thisincludestechnical
robustness,riskmitigation,andincorporatingfail-
safestopreventoraddressunintendedconsequencesorfailures.TheEUAIActexemplifiesthisapproach
bymandatingstringentsafetystandardsforhigh-
riskAIapplications.PrioritizingsafetyisessentialtominimizingrisksandmaintainingbothoperationalcontinuityandpublictrustintheUAE.
Real-worldexamples:
?AutonomousVehicles:AI-drivencarsfailingtorecognizepedestriansinlowvisibilityconditions,leadingtoaccidentsandregulatoryscrutiny.
?HealthcareAI:DiagnosticAImisinterpreting
medicalimages,leadingtoincorrecttreatmentsandpotentialliabilityrisks.
EmbeddingThisPrincipleintoAIGovernance
EnsuringAIsafetyrequiresastructuredapproach—fromriskassessmentstocontinuoustestingand
fail-safemechanisms.ToolslikeKPMG’sTrusted
AIRiskFrameworksupportthisprocessbyofferingastructuredmethodologytoidentify,assess,and
mitigateAI-relatedrisks,includingthosetiedto
safety,inalignmentwithstandardssuchasISO
42001andtheEUAIAct.Combinedwithastrong
AIgovernanceframework,thesetoolshelpensuresafetymeasuresremaineffective,transparent,andalignedwithbothlocalandglobalbestpractices.Byembeddingsafetybestpracticesintoeverystageofdevelopment,organizationscanenhancereliability,maintaincompliance,andbuildtrust.
15
Principle2
BestPracticesandMethodologies
StrategyandDesign
?SafetyGoalsandMetrics:EstablishclearsafetygoalsandmetricsforAIinitiatives,focusingonreliability,resilience,transparency,andsecurity.ToolslikeKPMG’sAImetricscanmeasure
performanceandensureethicalalignment.
?RiskIdentification:Definesafetyrisks
associatedwiththeAIsystemsandestablishprotocolsforriskmitigation.
?StakeholderConsultation:Engageregulators,industryexperts,andend-userstoanticipatesafetyconcernsbeforedevelopment.
?Fail-SafeDesign:Ensurethatthedesignof
AIsystemshasclearoverridemechanismstopreventharmincaseoffailure.Incorporate
fallbackmechanisms,monitoring,andhuman-in-the-loop.
DataEnablement
?DataIntegrityChecks:Validatetrainingdataforaccuracy,completeness,andconsistencytopreventAIfailures.
?BiasandAnomalyDetection:IdentifybiasesthatcouldleadtounsafeAIbehavior,suchasmisclassificationinhealthcareorautonomoussystems.
?SimulationandStressTestingData:TrainAImodelsonvariedscenarios,includingedgecases,toensurerobustnessinreal-world
applications.
ModelDevelopment
?Safety-ConsciousAlgorithms:Implement
algorithmsthatprioritizesafety,incorporating
guardrailsandconstraintstopreventharmfuldecisions.
?Fail-SafeMechanisms:Embedfail-safe
mechanismslikehuman-in-the-loopandlogginginthefinaldesign.
?ExplainabilityandTransparency:EnsurethatAIdecisionscanbeunderstoodandauditedtoidentifypotentialsafetyrisksbefore
deployment.
TestingandEvaluation
?AdversarialTesting:IdentifyweakpointsintheAIsystembytestingagainstpotentialfailure
pointsandestablishcorrectivemeasuresbeforedeployment.
?TestingforEdgeCases:EvaluateAIperformanceunderextremeconditions(e.g.lowvisibility
forself-drivingcarsorunpredictablemarketfluctuationsinfinance).
?SafetyBenchmarking:Defineandmeasure
safetyperformanceagainstindustrystandards.
DeploymentandMonitoring
?ContinuousSafetyMonitoring:Regularly
auditAIsystemspost-deploymenttodetectanomaliesorfailures.
?IncidentResponsePlans:EstablishclearescalationprotocolsforAImalfunctionstoensurequickremediation.
?RegulatoryComplianceReporting:Document
andcommunicatesafetymeasureswithinthe
organizationtodemonstrateadherencetosafetystandards.
ExtendingthePrincipletoAgenticAISystems
AgenticAIintroducesdynamicdecision-making,
whichrequiresreal-timeriskdetectionand
mitigationcapabilities.Safetyprotocolsmustbe
embeddednotjustincode,butalsoinhowagentsinteractwithsystemsandpeople.Fail-safesand
escalationpathstohumansupervisorsareessential.Simulationtestingforadversarialorunintended
agentbehaviormustbeprioritized.Organizationsshouldtrackagentactionstoensureaccountability.
KeyTools,Techniquesand
FurtherReadingToolsandTechniques:
?AdversarialTestingFrameworks(e.g.CleverHans,Foolbox)
?FormalVerificationTools(e.g.TLA+,Z3)
?BayesianNetworks,MonteCarloDropout
?RedTeamingandSimulationLabs
?KPMGTrustedAIFramework
?KPMGTrustedAIRiskandControlMatrix(RCM)
FurtherReading:
?NISTAIRiskManagementFramework
?OpenAI’sSystemSafetyPractices
?EUAIAct:SafetyProvisionsforHigh-RiskSystems
Principle3
AlgorithmicBias
TheUAEaimstoaddressthechallengesposedby
AIalgorithmsregarding
algorithmicbias,contributingtoafairandequitable
environmentforallcommunitymembers.Thispromotes
responsibledevelopmentof
AItechnologies,makingtheminclusiveandaccessibleto
everyone,supportingdiversity,andrespectingindividual
differences.Itensuresequal
technologicalbenefitsand
improvesqualityoflifewithoutexclusionordiscrimination.
18
UnderstandingthePrincipleinReal-WorldTerms
Inpractice,algorithmicbiasoccurswhenAI
systemsmakedecisionsthatunintentionallyfavorordisadvantagecertaingroupsbasedonfactorslikegender,ethnicity,age,orsocioeconomicstatus.Thiscanstemfrombiasedtrainingdata,flawedmodelassumptions,oralackofdiverserepresentationindevelopment.Addressingbiasiscriticaltobuildingtrust,ensuringfairness,andmitigatingfinancial,
legal,andreputationalrisks.
Real-worldexamples:
?HiringSystems:AIsystemsrejectingfemale
candidatesbasedonbiasedtrainingdataderivedfrommale-dominatedindustries,exposingthecompanytodiscriminationclaimsorregulatorypenalties.
?LoanApprovals:AI-basedcreditsystemsrejectingloanapplicantsbasedonhistoricaldiscriminatorypractices,potentiallyviolatingfairlendinglaws.
EmbeddingThisPrincipleintoAIGovernance
Toeffectivelyaddressalgorithmicbiasinyour
AIsystems,embedfairnessintoeveryphaseof
development.Thisincludesmakingproactivedesignchoices,usingrepresentativeandbalanceddata,andconductingcontinuoustestingtoensureequitable
outcomes.EffectiveAIgovernance,supportedbya
strongframework,shouldbewovenintoeachstagetoensureaccountability,transparency,andcompliancewithethicalandlocalregulatorystandards.Bydoingso,organizationscantranslatetheprincipleof
fairnessintoactionable,impactfulstepsthatdrive
responsibleAIdevelopmentthatalignswiththeUAE’srequirements.
19
Principle3
BestPracticesandMethodologies
StrategyandDesign
?DefineFairnessObjectives:Clearlyoutline
fairnessgoalswithmetricsforeachAIinitiative,
identifyingpotentialbiasesandensuring
thattheneedsofdiversestakeholdergroupsarerepresented.Thisshouldbeguidedand
alignedwithyourorganization’sAIgovernanceframework.
?InclusiveDesign:Involvediverseteams—
rangingfromethiciststoaffectedcommunity
members—duringthedesignphasetoidentifyandaddresspossiblesourcesofbiasbeforetheyemerge.
?AdoptExplainableAI(XAI):EnsuretransparencyinhowAImodelsmakedecisionsby
implementingexplainableAIframeworksthatallowstakeholderstounderstandandauditAIoutputs.
DataEnablement
?EnsureRepresentativeness:Makesuredatasetsaccuratelyrepresentdiversedemographics(age,gender,ethnicity,socioeconomicstatus,etc.),
particularlyinareaslikehiring,healthcare,andfinance.
?BiasAudits:Regularlyperformauditsontrainingdatasetstoidentifyandmitigatehistoricalandsocietalbiases,includingdirectbiases,proxy
biases,samplingbiases,andmeasurementbiases.
?DataLabeling:Improvethequalityandaccuracyofdatalabelingtopreventsubjectiveorbiasedannotations.Ensurethatdatalabelsreflectthediversityofthepopulationbeingrepresented.
ModelDevelopment
?BiasDetectionDuringModelDesign:ScreenAImodelsforpotentialproxybiases—variables
likezipcodesorincomelevelsthatcould
inadvertentlyreflectsensitiveattributessuchasraceorgender.
?Fairness-AwareAlgorithms:Usefairness-
enhancingalgorithmsthatcanidentifyand
correctbiasesbyadjustingforimbalancesinthemodel’spredictionsoroutcomes.
?DocumentModelChoices:Documentthe
rationalebehindkeydecisionsmadeduring
modeldevelopment,includingtheselectionoffeaturesandalgorithms,toensuretransparencyandaccountability.
TestingandEvaluation
?ThresholdSetting:Beforedeployment,define
acceptablefairnessthresholdsthatalignwith
thefairnessgoalsandmetricssetattheideationstage.
?ImpactTesting:TestthefullytrainedmodelsforbiasagainstthefairnessthresholdsandevaluatehowtheAIsystem’soutcomesdifferacross
demographicsandadjustasnecessarytoensureequitableresults.
DeploymentandMonitoring
?OngoingMonitoring:ContinuouslymonitortheperformanceofAIsystemspost-deploymenttoensurefairnessandalignmentwiththe
governanceframework.Ensurethesystemadaptstoevolvingsocietalnormsand
expectations.
20
?FeedbackMechanisms:Establishmechanismsthatallowusersandstakeholderstoreport
biasedoutcomesorissues.
?PeriodicReporting:Regularlypublishbias
impacttestingreports,allowingbothinterna
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨床輸血考試題及答案
- 初級會計職稱考試會計實務(wù)練習(xí)題及答案
- 油氣計量考試試題及答案
- vivo校招面試題及答案
- 單招畜牧考試題目及答案
- 成都九上語文試題及答案
- 2026黑龍江哈爾濱啟航勞務(wù)派遣有限公司派遣至哈爾濱工業(yè)大學(xué)國際教育學(xué)院招聘10人備考題庫附答案
- 中共南部縣委組織部關(guān)于2025年南部縣黨政機關(guān)公開考調(diào)工作人員的(16人)備考題庫必考題
- 中國雄安集團有限公司2026校園招聘備考題庫附答案
- 北京市大興區(qū)審計局招聘臨時輔助用工1人考試備考題庫附答案
- 《開學(xué)第一課:龍馬精神·夢想起航》課件 2025-2026學(xué)年統(tǒng)編版語文七年級下冊
- 2026年洪湖市事業(yè)單位人才引進100人參考考試題庫及答案解析
- 2026年中好建造(安徽)科技有限公司第一次社會招聘42人筆試參考題庫及答案解析
- 北京市海淀區(qū)2025一2026學(xué)年度第一學(xué)期期末統(tǒng)一檢測歷史(含答案)
- 小拇指培訓(xùn)課件
- 緊急護理人力資源應(yīng)急資源儲備
- GB/T 22182-2025油菜籽葉綠素含量的測定分光光度計法
- 2026吉林長春汽車經(jīng)濟技術(shù)開發(fā)區(qū)招聘編制外輔助崗位人員69人考試備考試題及答案解析
- 2024年基層社會治理專題黨課
- 消防培訓(xùn)案例課件
- 2026年科研儀器預(yù)約使用平臺服務(wù)協(xié)議
評論
0/150
提交評論