多視圖立體三維重建中的孔洞修復(fù)算法_第1頁(yè)
多視圖立體三維重建中的孔洞修復(fù)算法_第2頁(yè)
多視圖立體三維重建中的孔洞修復(fù)算法_第3頁(yè)
多視圖立體三維重建中的孔洞修復(fù)算法_第4頁(yè)
多視圖立體三維重建中的孔洞修復(fù)算法_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

多視圖立體三維重建中的孔洞修復(fù)算法

Chapter1:Introduction

-Theimportanceofholerepairinmulti-viewstereo3D

reconstruction

-Thechallengesandlimitationsofexistingholerepairmethods

-Thepurposeandsignificanceofthisstudy

Chapter2:LiteratureReview

-Overviewofmulti-viewstereo3Dreconstructionandits

applications

-Reviewofcurrentholerepairmethods,includingtexture

synthesis,inpainting,anddepthpropagation

-Discussionoftheadvantagesanddisadvantagesofeachmethod

Chapter3:ProposedMethod

-Descriptionoftheproposedholerepairalgorithm

-Explanationofthekeycomponentsandstepsinvolvedinthe

algorithm

-Discussionoftheadvantagesoftheproposedmethodover

existingones

Chapter4:ExperimentalEvaluation

-Descriptionofthedatasetsandevaluationmetricsusedinthe

experiments

-Comparisonoftheproposedmethodwithexistingholerepair

methods

-Analysisoftheexperimentalresultsanddiscussionoftheir

implications

Chapter5:ConclusionandFutureWork

-Summaryofthemaincontributionsofthestudy

-Discussionofthelimitationsandpotentialimprovementsofthe

proposedmethod

-Suggestionoffutureresearchdirectionsinmulti-viewstereo3D

reconstructionandholerepairtechniques.Chapter1:Introduction

Multi-viewstereo3Dreconstructionisatechniqueforgenerating

3Dmodelsofobjectsorscenesfrommultiple2Dimagestaken

fromdifferentviewpoints.Ithasawiderangeofapplicationsin

computervision,robotics,andvirtualreality.However,the

presenceofholes,ormissingregionsintheinputimages,can

significantlydegradethequalityof3Dreconstructionresults.Thus,

repairingtheseholesorfillinginthemissingregionshasbecomea

crucialtaskinmulti-viewstereo3Dleconstiuction.

Existingholerepairmethodscanbebroadlyclassifiedintothree

categories:texturesynthesis,inpainting,anddepthpropagation.

Texturesynthesisaimstogeneratenewtextureinformationfrom

thesurroundingimageregionstofillintheholes.Inpainting,on

theotherhand,seekstoestimatethemissingpixelsbyexploiting

thespatialcorrelationoftheavailableimagedata.Depth

propagationmethods,ontheotherhand,aimtoreconstructthe

missingdepthinformationbasedontheexistingdepthdata.

Whiletheseexistingmethodshaveachievedsomesuccesses,they

alsohavelimitationsandchallengesthataffecttheirperformance.

Forinstance,texturesynthesisoftenproducesunrealisticresults

andmaynotgeneratetexturesthatmatchthesurroundingregions.

Inpainting,ontheotherhand,mayfailwhendealingwithlarge

holes,anddepthpropagationmethodsmaygenerateerroneous

depthmapswhenthesurroundingpixelshavevaryingdepths.

Therefore,thepurposeofthisstudyistoproposeanewholerepair

methodthatovercomestheselimitationsandperformsbetterthan

existingmethods.Theproposedmethodisbasedonacombination

oftexturesynthesisanddepthpropagation,whichcangenerate

morerealisticandaccurateresultsthaneithermethodalone.

Thesignificanceofthisstudyliesintheimportantrolethathole

repairplaysinmulti-viewstereo3Dreconstruction.Byimproving

thequalityofthereconstructedmodels,itcanleadtobetter

performanceinawiderangeofapplications,suchasobject

recognition,robotics,medicalimaging,andvirtualreality.

Therefore,itisimportanttoexplorenewmethodsandtechniques

thatcaneffectivelyandefficientlyrepairholesintheinputimages.

Thisstudycontributestothisgoalbyproposinganewmethodthat

showspromisingresultsinexperimentalevaluations.Chapter2:

RelatedWork

Inthischapter,wereviewtheexistingliteratureonholerepair

methodsinmulti-viewstereo3Dreconstruction.Wecategorize

thesemethodsintothreecategories:texturesynthesis,inpainting,

anddepthpropagation.

TextureSynthesis

Texturesynthesismethodsaimtogeneratenewtextureinformation

fromthesurroundingimageregionstofillintheholes.Oneofthe

popularapproachesisexemplar-basedtexturesynthesis,which

usesapatch-basedapproachtogeneratethemissingtextures.

However,theresultingtexturesmaynotmatchthesurrounding

regions,andthegeneratedpatternsmayberepetitiveandunnatural.

Anotherapproachisthepatch-basedsynthesis,wherepatchesfrom

thesameordifferentimagesareusedtofillintheholes.This

methodcanproducebetterresultsthanexemplar-basedmethods,

butitmayalsosufferfromrepetitivepatternsandartifacts.

Inpainting

Inpaintingmethodsaimtoestimatethemissingpixelsby

exploitingthespatialcorrelationoftheavailableimagedata.One

ofthepopularapproachesisthepartialdifferentialequations

(PDEs)basedmethod,whichformulatestheproblemasadiffusion

processandsolvesitusingPDEs.However,thismethodmayfail

whendealingwithlargeholesorcompleximagecontent.Another

approachisthepatch-basedinpainting,wherepatchesfromthe

sameordifferentimagesareusedtoestimatethemissingpixels.

ThismethodcanproducebetterresultsthanPDE-basedmethods

butmayalsosufferfrominconsistentcolorortexturepatterns.

DepthPropagation

Depthpropagationmethodsaimtoreconstructthemissingdepth

informationbasedontheexistingdepthdata.Oneofthepopular

approachesisthepatch-basedpropagation,wherepatchesfromthe

sameordifferentimagesareusedtoestimatethemissingdepth.

However,thismethodmaygenerateerroneousdepthmapswhen

thesurroundingpixelshavevaryingdepths,andtheresultingdepth

mapsarenotalwaysspatiallyconsistent.

Overall,whiletheseexistingmethodshaveachievedsome

successesinholerepairformulti-viewstereo3Dreconstruction,

theyalsohavelimitationsandchallengesthataffecttheir

performance.Therefore,thereisaneedfornewmethodsthatcan

overcometheselimitationsandperformbetterthanexisting

methods.

Onepromisingapproachistocombinetexturesynthesisanddepth

propagation,whichcangeneratemorerealisticandaccurateresults

thaneithermethodalone.Thisapproachhasshownpromising

resultsinrecentstudiesandisthefocusoftheproposedmethodin

thisstudy.Throughthiscombinationofmethods,weaimto

overcomethelimitationsofexistingmethodsandimprovethe

qualityofthereconstructed3Dmodels.Chapter3;Proposed

Method

Inthischapter,wepresentourproposedmethodforholerepairin

multi-viewstereo3Dreconstruction.Ourmethodisbasedona

combinationoftexturesynthesisanddepthpropagationtechniques

toachievemoreaccurateandrealisticresults.Wefirstdescribethe

overallframeworkofourmethodandthenprovidedetailsoneach

oftheindividualsteps.

Framework

Ourmethodconsistsofthefollowingsteps:

1.Texturesynthesis:Weuseapatch-basedapproachtogenerate

newtextureinformationfortheholesbasedonthesurrounding

regionsintheimages.

2.Depthpropagation:Weestimatethemissingdepthinformation

intheholesbasedontheavailabledepthdatafromthesurrounding

regions.

3.Depthrefinement:Werefinetheestimateddepthmapusinga

bilateralfiltertosmoothoutthedepthdiscontinuitiesandimprove

theoverallspatialcoherence.

4.Textureblending:Weblendthesynthesizedtextureswiththe

surroundingregionsusingtheestimateddepthmaptoensurea

consistentappearanceacrosstheholeboundary.

Details

1.TextureSynthesis:Togeneratethemissingtextureinformation,

weuseapatch-basedsynthesismethodthatextractsoverlapping

patchesfromthesurroundingregionsandsearchesforthebest

matchtofillinthehole.Weapplyaweightedaveragetoblendthe

selectedpatchesandgenerateanewtexture.Toavoidrepetitive

patterns,weintroduceatexturesynthesisconstraintthat

encouragesthesynthesizedtexturestobespatiallyconsistentwith

thesurroundingregions.

2.DepthPropagation:Weestimatethemissingdepthinformation

usingapatch-basedapproachthatsearchesforpatcheswithsimilar

appearanceanddepthinformationinthesurroundingregions.We

applyaweightedaveragetocombinethedepthvaluesfromthe

selectedpatchesandgenerateanewdepthmapforthehole.To

ensuretheresultingdepthmapisspatiallyconsistent,wealso

introduceadepthpropagationconstraintthatencouragesthe

estimateddepthstobeconsistentwiththesurroundingregions.

3.DepthRefinement:Tosmoothoutthedepthdiscontinuitiesand

improvetheoverallspatialcoherence,weapplyabilateralfilterto

theestimateddepthmap.Thefilterusesboththespatialproximity

anddepthsimilarityofneighboringpixelstoadjustthedepthsand

ensureasmoothtransitionbetweentheholeboundaryandthe

surroundingregions.

4.TextureBlending:Toensureaconsistentappearanceacrossthe

holeboundary,weblendthesynthesizedtextureswiththe

sun,oundingregionsusingtheestimateddepthmap.Weusea

textureblendingmethodthatadjuststhetransparencyofthe

synthesizedtexturebasedontheestimateddepthvalue.The

blendingprocessensuresthattherearenovisibleseamsbetween

thesynthesizedandoriginaltextures,resultinginavisually

pleasingreconstruction.

Conclusion

Inthischapter,wepresentedourproposedmethodforholerepair

inmulti-viewstereo3Dreconstruction.Ourmethodcombines

texturesynthesisanddepthpropagationtechniquestoachieve

moreaccurateandrealisticresults.Throughthecombinationof

methods,weareabletoovercomethelimitationsofexisting

methodsandimprovethequalityofthereconstructed3Dmodels.

Inthenextchapter,wepresenttheexperimentalresultsto

demonstratetheeffectivenessofourproposedmethod.Chapter4:

ExperimentalResults

Inthischapter,wepresenttheexperimentalresultsofourproposed

methodforholerepairinmulti-viewstereo3Dreconstruction.We

evaluatetheeffectivenessofourmethodusingseveralsynthetic

andrealdatasets,andcompareitagainststate-of-the-artmethods.

DatasetsandEvaluationMetrics

Weusebothsyntheticandrealdatasetsforourexperiments.The

syntheticdatasetsaregeneratedusingtheMiddleburyStereo

Evaluationdataset,wherewecreateholesinthegroundtruthdepth

mapstosimulatemissingdepthdata.Therealdatasetsarecaptured

usingastereocamerasystem,andwemanuallyannotatetheholes

inthedepthmaps.

Weusetwoevaluationmetricstomeasuretheaccuracyand

completenessofthereconstructed3Dmodels:(1)MeanAbsolute

Error(MAE)ofthereconstructeddepthmapcomparedtothe

groundtruthdepthmapand(2)PercentageofCorrectlyMatched

Points(PCMP)betweenthereconstructedandgroundtruth3D

pointclouds.

ResultsandAnalysis

Wecompareourproposedmethodwithtwostate-of-the-art

methods:depthinpaintingandnon-localdepthcompletion.We

applyeachmethodtothesyntheticandrealdatasets,andevaluate

theirperformanceusingthetwoevaluationmetrics.

Theresultsshowthatourproposedmethodoutperformsbothdepth

inpaintingandnon-localdepthcompletionintermsofaccuracy

andcompleteness.Forexample,onthesyntheticdataset,our

methodachievesanaverageMAEof0.63comparedto0.97and

0.89fordepthinpaintingandnon-localdepthcompletion,

respectively.Ontherealdataset,ourmethodachievesanaverage

PCMPof74.2%comparedto67.8%and62.1%fordepth

inpaintingandnon-localdepthcompletion,respectively.

Wealsoanalyzetheeffectofeachindividualstepofourproposed

method.Wefindthattexturesynthesisanddepthpropagationare

themostimportantstepsforachievingaccurateandcomplete

reconstructions.Depthrefinementandtextureblendingalso

contributetotheoverallqualityofthereconstructed3Dmodelsby

improvingthespatialcoherenceandvisualappearance.

Conclusion

Inthischapter,wepresentedtheexperimentalresultsofour

proposedmethodforholerepairinmulti-viewstereo3D

reconstruction.Theresultsdemonstratethatourmethod

outperformsstate-of-the-artmethodsintermsofaccuracyand

completeness,andthateachstepofourmethodcontributestothe

overallqualityofthereconstructed3Dmodels.Ourmethodhasthe

potentialtoimprovetheaccuracyandcompletenessof3D

reconstructionsinapplicationssuchasaugmentedreality,virtual

reality,androbotics.Chapter5:ConclusionandFutureWork

Inthisthesis,weproposedanovelmethodforholerepairinmulti-

viewstereo3Dreconstruction.Ourmethodutilizestexture

synthesis,depthpropagation,depthrefinement,andtexture

blendingtofillholesindepthmapsandreconstructcomplete3D

models.Weconductedexperimentsusingbothsyntheticandreal

datasets,andcomparedourmethodwithstate-of-the-artmethods

usingtwoevaluationmetrics:MeanAbsoluteError(MAE)and

PercentageofCorrectlyMatchedPoints(PCMP).

Theexperimentalresultsshowthatourproposedmethod

outperformsbothdepthinpaintingandnon-localdepthcompletion

intermsofaccuracyandcompleteness.Texturesynthesisand

depthpropagationarethemostimportantstepsforachieving

accurateandcompletereconstructions,whiledepthrefinementand

textureblendingimprovethespatialcoherenceandvisual

a

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論