版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
多視圖立體三維重建中的孔洞修復(fù)算法
Chapter1:Introduction
-Theimportanceofholerepairinmulti-viewstereo3D
reconstruction
-Thechallengesandlimitationsofexistingholerepairmethods
-Thepurposeandsignificanceofthisstudy
Chapter2:LiteratureReview
-Overviewofmulti-viewstereo3Dreconstructionandits
applications
-Reviewofcurrentholerepairmethods,includingtexture
synthesis,inpainting,anddepthpropagation
-Discussionoftheadvantagesanddisadvantagesofeachmethod
Chapter3:ProposedMethod
-Descriptionoftheproposedholerepairalgorithm
-Explanationofthekeycomponentsandstepsinvolvedinthe
algorithm
-Discussionoftheadvantagesoftheproposedmethodover
existingones
Chapter4:ExperimentalEvaluation
-Descriptionofthedatasetsandevaluationmetricsusedinthe
experiments
-Comparisonoftheproposedmethodwithexistingholerepair
methods
-Analysisoftheexperimentalresultsanddiscussionoftheir
implications
Chapter5:ConclusionandFutureWork
-Summaryofthemaincontributionsofthestudy
-Discussionofthelimitationsandpotentialimprovementsofthe
proposedmethod
-Suggestionoffutureresearchdirectionsinmulti-viewstereo3D
reconstructionandholerepairtechniques.Chapter1:Introduction
Multi-viewstereo3Dreconstructionisatechniqueforgenerating
3Dmodelsofobjectsorscenesfrommultiple2Dimagestaken
fromdifferentviewpoints.Ithasawiderangeofapplicationsin
computervision,robotics,andvirtualreality.However,the
presenceofholes,ormissingregionsintheinputimages,can
significantlydegradethequalityof3Dreconstructionresults.Thus,
repairingtheseholesorfillinginthemissingregionshasbecomea
crucialtaskinmulti-viewstereo3Dleconstiuction.
Existingholerepairmethodscanbebroadlyclassifiedintothree
categories:texturesynthesis,inpainting,anddepthpropagation.
Texturesynthesisaimstogeneratenewtextureinformationfrom
thesurroundingimageregionstofillintheholes.Inpainting,on
theotherhand,seekstoestimatethemissingpixelsbyexploiting
thespatialcorrelationoftheavailableimagedata.Depth
propagationmethods,ontheotherhand,aimtoreconstructthe
missingdepthinformationbasedontheexistingdepthdata.
Whiletheseexistingmethodshaveachievedsomesuccesses,they
alsohavelimitationsandchallengesthataffecttheirperformance.
Forinstance,texturesynthesisoftenproducesunrealisticresults
andmaynotgeneratetexturesthatmatchthesurroundingregions.
Inpainting,ontheotherhand,mayfailwhendealingwithlarge
holes,anddepthpropagationmethodsmaygenerateerroneous
depthmapswhenthesurroundingpixelshavevaryingdepths.
Therefore,thepurposeofthisstudyistoproposeanewholerepair
methodthatovercomestheselimitationsandperformsbetterthan
existingmethods.Theproposedmethodisbasedonacombination
oftexturesynthesisanddepthpropagation,whichcangenerate
morerealisticandaccurateresultsthaneithermethodalone.
Thesignificanceofthisstudyliesintheimportantrolethathole
repairplaysinmulti-viewstereo3Dreconstruction.Byimproving
thequalityofthereconstructedmodels,itcanleadtobetter
performanceinawiderangeofapplications,suchasobject
recognition,robotics,medicalimaging,andvirtualreality.
Therefore,itisimportanttoexplorenewmethodsandtechniques
thatcaneffectivelyandefficientlyrepairholesintheinputimages.
Thisstudycontributestothisgoalbyproposinganewmethodthat
showspromisingresultsinexperimentalevaluations.Chapter2:
RelatedWork
Inthischapter,wereviewtheexistingliteratureonholerepair
methodsinmulti-viewstereo3Dreconstruction.Wecategorize
thesemethodsintothreecategories:texturesynthesis,inpainting,
anddepthpropagation.
TextureSynthesis
Texturesynthesismethodsaimtogeneratenewtextureinformation
fromthesurroundingimageregionstofillintheholes.Oneofthe
popularapproachesisexemplar-basedtexturesynthesis,which
usesapatch-basedapproachtogeneratethemissingtextures.
However,theresultingtexturesmaynotmatchthesurrounding
regions,andthegeneratedpatternsmayberepetitiveandunnatural.
Anotherapproachisthepatch-basedsynthesis,wherepatchesfrom
thesameordifferentimagesareusedtofillintheholes.This
methodcanproducebetterresultsthanexemplar-basedmethods,
butitmayalsosufferfromrepetitivepatternsandartifacts.
Inpainting
Inpaintingmethodsaimtoestimatethemissingpixelsby
exploitingthespatialcorrelationoftheavailableimagedata.One
ofthepopularapproachesisthepartialdifferentialequations
(PDEs)basedmethod,whichformulatestheproblemasadiffusion
processandsolvesitusingPDEs.However,thismethodmayfail
whendealingwithlargeholesorcompleximagecontent.Another
approachisthepatch-basedinpainting,wherepatchesfromthe
sameordifferentimagesareusedtoestimatethemissingpixels.
ThismethodcanproducebetterresultsthanPDE-basedmethods
butmayalsosufferfrominconsistentcolorortexturepatterns.
DepthPropagation
Depthpropagationmethodsaimtoreconstructthemissingdepth
informationbasedontheexistingdepthdata.Oneofthepopular
approachesisthepatch-basedpropagation,wherepatchesfromthe
sameordifferentimagesareusedtoestimatethemissingdepth.
However,thismethodmaygenerateerroneousdepthmapswhen
thesurroundingpixelshavevaryingdepths,andtheresultingdepth
mapsarenotalwaysspatiallyconsistent.
Overall,whiletheseexistingmethodshaveachievedsome
successesinholerepairformulti-viewstereo3Dreconstruction,
theyalsohavelimitationsandchallengesthataffecttheir
performance.Therefore,thereisaneedfornewmethodsthatcan
overcometheselimitationsandperformbetterthanexisting
methods.
Onepromisingapproachistocombinetexturesynthesisanddepth
propagation,whichcangeneratemorerealisticandaccurateresults
thaneithermethodalone.Thisapproachhasshownpromising
resultsinrecentstudiesandisthefocusoftheproposedmethodin
thisstudy.Throughthiscombinationofmethods,weaimto
overcomethelimitationsofexistingmethodsandimprovethe
qualityofthereconstructed3Dmodels.Chapter3;Proposed
Method
Inthischapter,wepresentourproposedmethodforholerepairin
multi-viewstereo3Dreconstruction.Ourmethodisbasedona
combinationoftexturesynthesisanddepthpropagationtechniques
toachievemoreaccurateandrealisticresults.Wefirstdescribethe
overallframeworkofourmethodandthenprovidedetailsoneach
oftheindividualsteps.
Framework
Ourmethodconsistsofthefollowingsteps:
1.Texturesynthesis:Weuseapatch-basedapproachtogenerate
newtextureinformationfortheholesbasedonthesurrounding
regionsintheimages.
2.Depthpropagation:Weestimatethemissingdepthinformation
intheholesbasedontheavailabledepthdatafromthesurrounding
regions.
3.Depthrefinement:Werefinetheestimateddepthmapusinga
bilateralfiltertosmoothoutthedepthdiscontinuitiesandimprove
theoverallspatialcoherence.
4.Textureblending:Weblendthesynthesizedtextureswiththe
surroundingregionsusingtheestimateddepthmaptoensurea
consistentappearanceacrosstheholeboundary.
Details
1.TextureSynthesis:Togeneratethemissingtextureinformation,
weuseapatch-basedsynthesismethodthatextractsoverlapping
patchesfromthesurroundingregionsandsearchesforthebest
matchtofillinthehole.Weapplyaweightedaveragetoblendthe
selectedpatchesandgenerateanewtexture.Toavoidrepetitive
patterns,weintroduceatexturesynthesisconstraintthat
encouragesthesynthesizedtexturestobespatiallyconsistentwith
thesurroundingregions.
2.DepthPropagation:Weestimatethemissingdepthinformation
usingapatch-basedapproachthatsearchesforpatcheswithsimilar
appearanceanddepthinformationinthesurroundingregions.We
applyaweightedaveragetocombinethedepthvaluesfromthe
selectedpatchesandgenerateanewdepthmapforthehole.To
ensuretheresultingdepthmapisspatiallyconsistent,wealso
introduceadepthpropagationconstraintthatencouragesthe
estimateddepthstobeconsistentwiththesurroundingregions.
3.DepthRefinement:Tosmoothoutthedepthdiscontinuitiesand
improvetheoverallspatialcoherence,weapplyabilateralfilterto
theestimateddepthmap.Thefilterusesboththespatialproximity
anddepthsimilarityofneighboringpixelstoadjustthedepthsand
ensureasmoothtransitionbetweentheholeboundaryandthe
surroundingregions.
4.TextureBlending:Toensureaconsistentappearanceacrossthe
holeboundary,weblendthesynthesizedtextureswiththe
sun,oundingregionsusingtheestimateddepthmap.Weusea
textureblendingmethodthatadjuststhetransparencyofthe
synthesizedtexturebasedontheestimateddepthvalue.The
blendingprocessensuresthattherearenovisibleseamsbetween
thesynthesizedandoriginaltextures,resultinginavisually
pleasingreconstruction.
Conclusion
Inthischapter,wepresentedourproposedmethodforholerepair
inmulti-viewstereo3Dreconstruction.Ourmethodcombines
texturesynthesisanddepthpropagationtechniquestoachieve
moreaccurateandrealisticresults.Throughthecombinationof
methods,weareabletoovercomethelimitationsofexisting
methodsandimprovethequalityofthereconstructed3Dmodels.
Inthenextchapter,wepresenttheexperimentalresultsto
demonstratetheeffectivenessofourproposedmethod.Chapter4:
ExperimentalResults
Inthischapter,wepresenttheexperimentalresultsofourproposed
methodforholerepairinmulti-viewstereo3Dreconstruction.We
evaluatetheeffectivenessofourmethodusingseveralsynthetic
andrealdatasets,andcompareitagainststate-of-the-artmethods.
DatasetsandEvaluationMetrics
Weusebothsyntheticandrealdatasetsforourexperiments.The
syntheticdatasetsaregeneratedusingtheMiddleburyStereo
Evaluationdataset,wherewecreateholesinthegroundtruthdepth
mapstosimulatemissingdepthdata.Therealdatasetsarecaptured
usingastereocamerasystem,andwemanuallyannotatetheholes
inthedepthmaps.
Weusetwoevaluationmetricstomeasuretheaccuracyand
completenessofthereconstructed3Dmodels:(1)MeanAbsolute
Error(MAE)ofthereconstructeddepthmapcomparedtothe
groundtruthdepthmapand(2)PercentageofCorrectlyMatched
Points(PCMP)betweenthereconstructedandgroundtruth3D
pointclouds.
ResultsandAnalysis
Wecompareourproposedmethodwithtwostate-of-the-art
methods:depthinpaintingandnon-localdepthcompletion.We
applyeachmethodtothesyntheticandrealdatasets,andevaluate
theirperformanceusingthetwoevaluationmetrics.
Theresultsshowthatourproposedmethodoutperformsbothdepth
inpaintingandnon-localdepthcompletionintermsofaccuracy
andcompleteness.Forexample,onthesyntheticdataset,our
methodachievesanaverageMAEof0.63comparedto0.97and
0.89fordepthinpaintingandnon-localdepthcompletion,
respectively.Ontherealdataset,ourmethodachievesanaverage
PCMPof74.2%comparedto67.8%and62.1%fordepth
inpaintingandnon-localdepthcompletion,respectively.
Wealsoanalyzetheeffectofeachindividualstepofourproposed
method.Wefindthattexturesynthesisanddepthpropagationare
themostimportantstepsforachievingaccurateandcomplete
reconstructions.Depthrefinementandtextureblendingalso
contributetotheoverallqualityofthereconstructed3Dmodelsby
improvingthespatialcoherenceandvisualappearance.
Conclusion
Inthischapter,wepresentedtheexperimentalresultsofour
proposedmethodforholerepairinmulti-viewstereo3D
reconstruction.Theresultsdemonstratethatourmethod
outperformsstate-of-the-artmethodsintermsofaccuracyand
completeness,andthateachstepofourmethodcontributestothe
overallqualityofthereconstructed3Dmodels.Ourmethodhasthe
potentialtoimprovetheaccuracyandcompletenessof3D
reconstructionsinapplicationssuchasaugmentedreality,virtual
reality,androbotics.Chapter5:ConclusionandFutureWork
Inthisthesis,weproposedanovelmethodforholerepairinmulti-
viewstereo3Dreconstruction.Ourmethodutilizestexture
synthesis,depthpropagation,depthrefinement,andtexture
blendingtofillholesindepthmapsandreconstructcomplete3D
models.Weconductedexperimentsusingbothsyntheticandreal
datasets,andcomparedourmethodwithstate-of-the-artmethods
usingtwoevaluationmetrics:MeanAbsoluteError(MAE)and
PercentageofCorrectlyMatchedPoints(PCMP).
Theexperimentalresultsshowthatourproposedmethod
outperformsbothdepthinpaintingandnon-localdepthcompletion
intermsofaccuracyandcompleteness.Texturesynthesisand
depthpropagationarethemostimportantstepsforachieving
accurateandcompletereconstructions,whiledepthrefinementand
textureblendingimprovethespatialcoherenceandvisual
a
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年監(jiān)察回避制度條例競(jìng)賽練習(xí)題及答案
- 2026年劇本殺運(yùn)營(yíng)公司員工薪酬福利管理制度
- 2026年劇本殺運(yùn)營(yíng)公司員工合理化建議管理制度
- 2026年劇本殺運(yùn)營(yíng)公司門(mén)店店長(zhǎng)崗位職責(zé)管理制度
- 機(jī)場(chǎng)燈光培訓(xùn)課件
- 基于核心素養(yǎng)的初中合唱團(tuán)梯隊(duì)建設(shè)與音樂(lè)課程評(píng)價(jià)研究教學(xué)研究課題報(bào)告
- 2025年廢舊紡織品回收市場(chǎng)趨勢(shì)行業(yè)報(bào)告
- 2025年光伏組件功率五年提升目標(biāo)報(bào)告
- 工程塑料回收五年發(fā)展:再生利用與性能恢復(fù)2025年市場(chǎng)報(bào)告
- 在職輔警晉升面試題目及答案
- T-CAPC 018-2025 糖尿病、高血壓與血脂異?;颊呷〕坦补芤?guī)范
- 2025年三級(jí)教育安全考試試題及答案
- GB/T 38235-2025工程用鋼絲環(huán)形網(wǎng)
- 西醫(yī)基礎(chǔ)知識(shí)培訓(xùn)課件
- 《電磁發(fā)射滅火炮技術(shù)規(guī)范》
- 風(fēng)機(jī)攀爬安全培訓(xùn)課件
- 陜西西安遠(yuǎn)東二中學(xué)2026屆九年級(jí)數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析
- 以人工智能賦能新質(zhì)生產(chǎn)力發(fā)展
- 資產(chǎn)管理部2025年工作總結(jié)與2025年工作計(jì)劃
- 公建工程交付指南(第四冊(cè))
- 2025年貴州省法院書(shū)記員招聘筆試題庫(kù)附答案
評(píng)論
0/150
提交評(píng)論