難點解析廣東省鶴山市中考數(shù)學真題分類(勾股定理)匯編定向訓練練習題(解析版)_第1頁
難點解析廣東省鶴山市中考數(shù)學真題分類(勾股定理)匯編定向訓練練習題(解析版)_第2頁
難點解析廣東省鶴山市中考數(shù)學真題分類(勾股定理)匯編定向訓練練習題(解析版)_第3頁
難點解析廣東省鶴山市中考數(shù)學真題分類(勾股定理)匯編定向訓練練習題(解析版)_第4頁
難點解析廣東省鶴山市中考數(shù)學真題分類(勾股定理)匯編定向訓練練習題(解析版)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省鶴山市中考數(shù)學真題分類(勾股定理)匯編定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為(

)A.0.7米 B.1.5米 C.2.2米 D.2.4米2、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個小正方形的邊長均為1),點A,B,C恰好在網(wǎng)格圖中的格點上,那么△ABC中BC邊上的高是(

)A. B. C. D.3、如圖,嘉嘉在A時測得一棵4米高的樹的影長為,若A時和B時兩次日照的光線互相垂直,則B時的影長為(

)A. B. C. D.4、已知直角三角形的兩條邊長分別是3和4,那么這個三角形的第三條邊的長為(

)A.5 B.25 C. D.5或5、如圖,長方體的底面邊長分別為2cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側面纏繞一圈達到點B,那么所用細線最短需要(

)A.11cm B.2cm C.(8+2)cm D.(7+3)cm6、在中,,,,的對邊分別是a,b,c,若,,則的面積是(

)A. B. C. D.7、下面圖形能夠驗證勾股定理的有()個A.4個 B.3個 C.2個 D.1個第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在一次綜合實踐活動中,小明將一張邊長為的正方形紙片,沿著邊上一點與點的連線折疊,點是點的對應點,延長交于點,經(jīng)測量,,則的面積為______.2、有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面,這根蘆葦?shù)拈L度為_____尺.3、已知,在中,,,,則的面積為__.4、在一棵樹的5米高B處有兩個猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計算,如果兩只猴子所經(jīng)過的距離相等,則這棵樹高_______米.5、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為17米,幾分鐘后船到達點D的位置,此時繩子CD的長為10米,問船向岸邊移動了__米.6、把一根長12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.7、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.8、云頂滑雪公園是北京2022年冬奧會7個雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內云頂滑雪場U型池的實景圖和示意圖,該場地可以看作是從一個長方體中挖去了半個圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點E在上,.一名滑雪愛好者從點A滑到點E,他滑行的最短路線長為_________m.三、解答題(7小題,每小題10分,共計70分)1、如圖所示的一塊地,,,,,,求這塊地的面積.2、如圖,將一個長方形紙片ABCD沿對角線AC折疊,點B落在點E處,AE交DC于點F,已知AB=4,BC=2,求折疊后重合部分的面積.3、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為ts.(1)出發(fā)3s后,求PQ的長;(2)當點Q在邊BC上運動時,出發(fā)多久后,△PQB能形成等腰三角形?(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.4、已知:在中,點在直線上,點在同一條直線上,且,【問題初探】(1)如圖1,若平分,求證:.請依據(jù)以下的簡易思維框圖,寫出完整的證明過程.【變式再探】(2)如圖2,若平分的外角,交的延長線于點,問:和的數(shù)量關系發(fā)生改變了嗎?若改變,請寫出正確的結論,并證明;若不改變,請說明理由.【拓展運用】(3)如圖3,在的條件下.若,求的長度.5、《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾.”(注:1步=5尺)譯文:“有一架秋千,當它靜止時,踏板離地1尺,將它往前推送10尺(水平距離)時,秋千的踏板就和人一樣高,這個人的身高為5尺,秋千的繩索始終拉得很直,問繩索有多長.”6、如圖所示,△ABC的兩條高AD,BE相交于點F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.7、如圖,已知半徑為5的⊙M經(jīng)過x軸上一點C,與y軸交于A、B兩點,連接AM、AC,AC平分∠OAM,AO+CO=6(1)判斷⊙M與x軸的位置關系,并說明理由;(2)求AB的長;(3)連接BM并延長交圓M于點D,連接CD,求直線CD的解析式.-參考答案-一、單選題1、C【解析】【分析】在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.2、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設BC邊上的高為h,則,∴.故選A.點睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長,并用勾股定理的逆定理來判斷三角形是否是直角三角形是解題的關鍵.3、A【解析】【分析】根據(jù)勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2==,代入求解即可.【詳解】解:由題意,得∠ECF=∠CDF=∠CDE=90°,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,∴=,令DE=x,則EF=x+8,∴,整理,得16x=32,解得x=2.故選:A.【考點】本題考查利用勾股定理求線段長,拓展一元一次方程,正確的運算能力是解決問題的關鍵.4、D【解析】【分析】分情況討論:①當邊長為4的邊作斜邊時;②當邊長為4的邊作直角邊時,利用勾股定理分別求解即可.【詳解】解:當邊長為4的邊作斜邊時,第三條邊的長度為;當邊長為4的邊作直角邊時,第三條邊的長度為;綜上分析可知,這個三角形的第三條邊的長為5或,故D正確.故選:D.【考點】本題主要考查了勾股定理,掌握分類討論的思想是解題的關鍵.5、B【解析】【詳解】要求所用細線的最短距離,需將長方體的側面展開,進而根據(jù)“兩點之間線段最短”得出結果.解:將長方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..6、A【解析】【分析】根據(jù)題意可知,的面積為,結合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點】本題主要考查了勾股定理,完全平方公式變形求值,解題的關鍵是將完全平方公式變形求出ab的值.7、A【解析】【分析】分別計算圖形的面積進行證明即可.【詳解】解:A、由可得,故該項的圖形能夠驗證勾股定理;B、由可得,故該項的圖形能夠驗證勾股定理;C、由可得,故該項的圖形能夠驗證勾股定理;D、由可得,故該項的圖形能夠驗證勾股定理;故選:A.【考點】此題考查了圖形與勾股定理的推導,熟記勾股定理的計算公式及各種圖形面積的計算方法是解題的關鍵.二、填空題1、##【解析】【分析】根據(jù)題意,,進而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點】本題考查了折疊的性質,勾股定理,掌握勾股定理是解題的關鍵.2、13【解析】【分析】找到題中的直角三角形,設水深為x尺,根據(jù)勾股定理解答.【詳解】解:設水深為尺,則蘆葦長為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L度(尺,答:蘆葦長13尺.故答案為:13.【考點】本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數(shù)學的關鍵.3、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關鍵是分類討論思想.4、【解析】【分析】由題意知AD+DB=BC+CA,設BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點】本題考查了勾股定理在實際生活中的應用,本題中找到AD+DB=BC+CA的等量關系,并根據(jù)勾股定理列方程求解是解題的關鍵.5、9.【解析】【分析】在Rt△ABC中,利用勾股定理計算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動了9米,故答案為:9.【考點】本題考查了勾股定理的應用,關鍵是掌握從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.6、直角三角形【解析】【分析】首先計算出第三條鐵絲的長度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點】此題主要考查了勾股定理逆定理,關鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.7、+24【解析】【分析】連結BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個三角形面積相加即可.【詳解】解:連結BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點】本題考查勾股定理以及逆定理,三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.8、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點】本題考查了平面展開﹣最短路徑問題,解決本題的關鍵是掌握圓柱的側面展開圖是矩形,利用勾股定理求最短距離.三、解答題1、384【解析】【分析】連接,勾股定理求得,勾股定理的逆定理證明為直角三角形,進而根據(jù)三角形的面積公式計算和的面積之差即可.【詳解】解:連接,在直角中,,,由,解得,在中,,,,∵,∴,∴為直角三角形,要求這塊地的面積,求和的面積之差即可,,答:這塊地的面積為.【考點】本題考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解題的關鍵.2、【解析】【分析】先由折疊可知EC=BC=2,進而可知AD=CE,通過全等三角形的角角邊判定定理可證明△ADF≌△CEF,由全等可知FE=DF,設FC為x,則FE=DF=4-x,根據(jù)直角三角形的勾股定理可列方程,從而計算出CF的長度,通過CF與AD的長度可計算出重合部分面積.【詳解】解:∵△AEC是由△ABC沿AC折疊后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF與△CEF中,,∴△ADF≌△CEF(AAS),設FC=x,則FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折疊后重合部分的面積為.【考點】本題考查圖形折疊的相關性質,以及直角三角形的勾股定理的應用,以及全等三角形的判定,找到合適的條件,選擇適合的判定方法去證明全等三角形,利用勾股定理和方程思想列方程是解決本題的關鍵.3、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質可得到BP=BQ,可得到關于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關于t的方程,可求得t的值.(1)當t=3時,則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由題意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,當△PQB為等腰三角形時,則有BP=BQ,即16﹣t=2t,解得t=,∴出發(fā)秒后△PQB能形成等腰三角形;(3)①當CQ=BQ時,如圖1所示,則∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②當CQ=BC時,如圖2所示,則BC+CQ=24,∴t=24÷2=12秒.③當BC=BQ時,如圖3所示,過B點作BE⊥AC于點E,則BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.綜上所述:當t為11秒或12秒或13.2秒時,△BCQ為等腰三角形.【考點】本題考查了勾股定理、等腰三角形的性質、方程思想及分類討論思想等知識.用時間t表示出相應線段的長,化“動”為“靜”是解決這類問題的一般思路,注意方程思想的應用.4、(1)見解析

(2);理由見解析

(3)【解析】【分析】(1)根據(jù)ASA證明得BE=BC,得,進一步可得結論;(2)根據(jù)ASA證明得BE=BC,得;(3)連結,分別求出∠AEB=∠ADE=∠ACB=22.5°,再證明AE=CD,∠ADC=90°,由勾股定理可得AC,由EC=EA+AC可得結論.【詳解】解:(1)證明平分,在和中,,;.理由:平分,在和中,,.連結,,,,且,由得,,,.【考點】此題主要考查了全等三角形的判定與性質,勾股定理等知識,連接AD是解答此題的關鍵.5、尺【解析】【分析】設秋千的繩索長為x尺,根據(jù)題意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可.【詳解】解:設秋千的繩索長為x尺,根據(jù)題意可列方程為:x2=102+(x-4)2,解得:x=,∴秋千的繩索長為尺.【考點】此題主要考查了勾股定理的應用,關鍵是正確理解題意,表示出AB、AC的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.6、(1)見解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據(jù)AAS可證△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根據(jù)勾股定理可求.(1)證明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考點】本題考查了全等三角形的判定與性質,勾股定理,熟練掌握全等三角形的判定與性質是解題的關鍵.7、(1)⊙M與x軸相切,理由見解析(2)6(3)【解析】【分析】(1)連接CM,證CM⊥x即可得出結論;(2)過點M作MN⊥AB于N,證四邊形OCMN是矩形,得MN=OC,ON=OM=5,設AN=x,則OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂徑定理得AB=2AN即可求解;(3)連接BC,CM,過點D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=,在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,從而得出點D坐標,然后用待定系數(shù)法求出直線CD解析式即可.(1)解:⊙M與x軸相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論