難點(diǎn)詳解河北省辛集市中考數(shù)學(xué)真題分類(平行線的證明)匯編重點(diǎn)解析試卷(含答案詳解版)_第1頁
難點(diǎn)詳解河北省辛集市中考數(shù)學(xué)真題分類(平行線的證明)匯編重點(diǎn)解析試卷(含答案詳解版)_第2頁
難點(diǎn)詳解河北省辛集市中考數(shù)學(xué)真題分類(平行線的證明)匯編重點(diǎn)解析試卷(含答案詳解版)_第3頁
難點(diǎn)詳解河北省辛集市中考數(shù)學(xué)真題分類(平行線的證明)匯編重點(diǎn)解析試卷(含答案詳解版)_第4頁
難點(diǎn)詳解河北省辛集市中考數(shù)學(xué)真題分類(平行線的證明)匯編重點(diǎn)解析試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北省辛集市中考數(shù)學(xué)真題分類(平行線的證明)匯編重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,∠B=∠C,則∠ADC與∠AEB的大小關(guān)系是(

)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關(guān)系不確定2、如圖,有以下四個(gè)條件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的條件的個(gè)數(shù)有(

)A.1 B.2 C.3 D.43、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°4、如圖,若,,則:①;②;③平分;④;⑤,其中正確的結(jié)論是A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、如圖,下列條件中,能判斷直線a∥b的有()個(gè).①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1 B.2 C.3 D.46、如圖7,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分別是BA,CD延長線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F.下列結(jié)論:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F=135°,其中正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7、下列圖形中,由AB∥CD,能得到∠1=∠2的是(

)A. B.C. D.8、下列定理中,沒有逆定理的是(

)A.等腰三角形的兩個(gè)底角相等 B.對頂角相等C.三邊對應(yīng)相等的兩個(gè)三角形全等 D.直角三角形兩個(gè)銳角的和等于90°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,用鐵絲折成一個(gè)四邊形ABCD(點(diǎn)C在直線BD的上方),且∠A=70°,∠BCD=120°,若使∠ABC、∠ADC平分線的夾角∠E的度數(shù)為100°,可保持∠A不變,將∠BCD______(填“增大”或“減小”)________°.2、如圖,點(diǎn)E是AD延長線上一點(diǎn),如果添加一個(gè)條件,使BC∥AD,則可添加的條件為__________.(任意添加一個(gè)符合題意的條件即可)3、如圖,將長方形紙片分別沿,折疊,點(diǎn),恰好重合于點(diǎn),,則__________.4、如圖,三角形ABC中,D是AB上一點(diǎn),F(xiàn)是BC上一點(diǎn),E,H是AC上的點(diǎn),EF的延長線交AB的延長線于點(diǎn)G,連接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,則∠ADE的度數(shù)為__.5、如圖,點(diǎn)O是△ABC的三條角平分線的交點(diǎn),連結(jié)AO并延長交BC于點(diǎn)D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點(diǎn)N,OH⊥BC于點(diǎn)H,有下列結(jié)論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)6、如圖,已知l1∥l2,直線l分別與l1,l2相交于點(diǎn)C,D,把一塊含30°角的三角尺按如圖位置擺放,若∠1=130°,則∠2=___.7、如圖,DE⊥AB,∠A=25°,∠D=45°,則∠ACB的度數(shù)為_____三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,已知AB∥CD,AB=CD,BE=CF.求證:(1)△ABF≌△DCE;(2)AF∥DE.2、如圖,以直角△AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C,OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足.(1)點(diǎn)A的坐標(biāo)為________;點(diǎn)C的坐標(biāo)為________.(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P,Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以每秒2個(gè)單位長度的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)沿y軸正方向以每秒1個(gè)單位長度的速度勻速移動(dòng),點(diǎn)P到達(dá)O點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.AC的中點(diǎn)D的坐標(biāo)是(4,3),設(shè)運(yùn)動(dòng)時(shí)間為t秒.問:是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請求出t的值;若不存在,請說明理由.(3)在(2)的條件下,若∠DOC=∠DCO,點(diǎn)G是第二象限中一點(diǎn),并且y軸平分∠GOD.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連接接CE交OD于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過程中,探究∠GOA,∠OHC,∠ACE之間的數(shù)量關(guān)系,并證明你的結(jié)論(三角形的內(nèi)角和為180°可以直接使用).3、如圖,點(diǎn)E,C在線段BF上,∠A=∠D,AB∥DE,BC=EF.求證:AC=DF.4、已知:如圖所示,DE⊥AC于點(diǎn)E,BC⊥AC于點(diǎn)C,F(xiàn)G⊥AB于點(diǎn)G,∠1=∠2,試說明CD⊥AB.5、已知:如圖,BE平分∠ABC,∠1=∠2.求證:BC//DE.6、問題情景:如圖1,在同一平面內(nèi),點(diǎn)和點(diǎn)分別位于一塊直角三角板的兩條直角邊,上,點(diǎn)與點(diǎn)在直線的同側(cè),若點(diǎn)在內(nèi)部,試問,與的大小是否滿足某種確定的數(shù)量關(guān)系?(1)特殊探究:若,則_________度,________度,_________度;(2)類比探索:請猜想與的關(guān)系,并說明理由;(3)類比延伸:改變點(diǎn)的位置,使點(diǎn)在外,其它條件都不變,判斷(2)中的結(jié)論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數(shù)量關(guān)系式.7、如圖,在△ABC中,點(diǎn)D為∠ABC的平分線BD上一點(diǎn),連接AD,過點(diǎn)D作EF∥BC交AB于點(diǎn)E,交AC于點(diǎn)F.(1)如圖1,若AD⊥BD于點(diǎn)D,∠BEF=120°,求∠BAD的度數(shù);(2)如圖2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度數(shù)(用含α和β的代數(shù)式表示).-參考答案-一、單選題1、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點(diǎn)】本題主要考查三角形內(nèi)角和定理的應(yīng)用,利用了三角形內(nèi)角和為180度,此題難度不大.2、C【解析】【分析】根據(jù)平行線的判定定理求解,即可求得答案.【詳解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的條件是①③④.故選:C.【考點(diǎn)】本題考查平行線的判定定理:1.同旁內(nèi)角互補(bǔ),兩直線平行;2.同位角相等,兩直線平行;3.內(nèi)錯(cuò)角相等,兩直線平行.3、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.4、C【解析】【分析】由平行線的性質(zhì)得出內(nèi)錯(cuò)角相等、同位角相等,得出②正確;再由已知條件證出,得出,①正確;由平行線的性質(zhì)得出⑤正確;即可得出結(jié)果.【詳解】解:,,,故②正確;,,,故①正確;,故⑤正確;而不一定平分,不一定等于,故③,④錯(cuò)誤;故選:C.【考點(diǎn)】本題考查了平行線的判定與性質(zhì),解題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì),并能進(jìn)行推理論證.5、C【解析】【分析】根據(jù)平行線的判定方法,對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:①∵∠1=∠4,∴a∥b(內(nèi)錯(cuò)角相等,兩直線平行);②∵∠3=∠5,∴a∥b(同位角相等,兩直線平行),③∵∠2+∠5=180°,∴a∥b(同旁內(nèi)角互補(bǔ),兩直線平行);④∠2和∠4不是同旁內(nèi)角,所以∠2+∠4=180°不能判定直線a∥b.∴能判斷直線a∥b的有①②③,共3個(gè).故選C.【考點(diǎn)】本題考查了平行線的判定,只有同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行,解題時(shí)要認(rèn)準(zhǔn)各角的位置關(guān)系.6、C【解析】【分析】先根據(jù)AB⊥BC,AE平分∠BAD交BC于點(diǎn)E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分線交于點(diǎn)F,由三角形內(nèi)角和定理以及平行線的性質(zhì)即可得出結(jié)論.【詳解】解:標(biāo)注角度如圖所示:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正確;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②錯(cuò)誤;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正確;∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分線交于點(diǎn)F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°,故④正確.故選:C.【考點(diǎn)】本題主要考查了平行線的性質(zhì)與判定、三角形內(nèi)角和定理、直角三角形的性質(zhì)及角平分線的計(jì)算,解題的關(guān)鍵是熟知三角形的內(nèi)角和等于180°.7、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)逐項(xiàng)判斷即可.【詳解】A、∵AB//CD,∴∠1+∠2=180°.故本選項(xiàng)不符合題意;B、如圖,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本選項(xiàng)正確.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本選項(xiàng)不符合題意;D、當(dāng)梯形ABDC是等腰梯形時(shí)才有,∠1=∠2.故本選項(xiàng)不符合題意.故選:B.【考點(diǎn)】本題考查平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解答的關(guān)鍵.8、B【解析】【詳解】解:A、等腰三角形的兩個(gè)底角相等的逆命題為:有兩個(gè)角相等的三角形為等腰三角形,此逆命題為真命題,所以A選項(xiàng)有逆定理;B、對頂角相等的逆命題為:相等的角為對頂角,此命題為假命題,所以B選項(xiàng)沒有逆定理;C、三邊對應(yīng)相等的兩個(gè)三角形全等的逆命題為:全等的兩個(gè)三角形的三邊對應(yīng)相等,此逆命題為真命題,所以C選項(xiàng)有逆定理;D、直角三角形的兩銳角的和為90°的逆命題為:兩銳角的和為90°的三角形為直角三角形,此逆命題為真命題,所以D選項(xiàng)有逆定理.故選B.二、填空題1、

增大

10【解析】【分析】利用三角形的外角性質(zhì)先求得∠ABE+∠ADE=30°,根據(jù)角平分線的定義得到∠ABC+∠ADC=60°,再利用三角形的外角性質(zhì)求解即可.【詳解】解:如圖,連接AE并延長,連接AC并延長,∠BED=∠BEF+∠DEF=∠ABE+∠BAD+∠ADE=100°,∵∠BAD=70°,∴∠ABE+∠ADE=30°,∵BE,DE分別是∠ABC、∠ADC平分線,∴∠ABC+∠ADC=2(∠ABE+∠ADE)=60°,同上可得,∠BCD=∠BAD+∠ABC+∠ADC=130°,130°-120°=10°,∴∠BCD增大了10°.故答案為:增大,10.【考點(diǎn)】本題考查了三角形的外角性質(zhì),三角形的內(nèi)角和定理,角平分線的定義等知識,熟練運(yùn)用題目中所給的結(jié)論是解題的關(guān)鍵.2、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE【解析】【分析】同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行,據(jù)此進(jìn)行判斷(答案不唯一).【詳解】解:若,則BC∥AD;若∠C+∠ADC=180°,則BC∥AD;若∠CBD=∠ADB,則BC∥AD;若∠C=∠CDE,則BC∥AD;故答案為∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)【考點(diǎn)】本題主要考查了平行線的判定,同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行.3、##54度【解析】【分析】根據(jù)翻折可得∠MAB=∠BAP,∠NAC=∠PAC,得∠MAB+∠NAC=90°,再由,即可解決問題.【詳解】解:根據(jù)翻折可知:∠MAB=∠BAP,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC180°=90°,∴∠MAB+∠NAC=90°,∵∠NAC=∠MAB,∴∠NAC+∠NAC=90°,∴∠NAC=54°.故答案為:54°.【考點(diǎn)】本題主要考查翻折變換,熟練掌握和應(yīng)用翻折的性質(zhì)是解題的關(guān)鍵.4、76°【解析】【分析】根據(jù)平行線的性質(zhì)和三角形的內(nèi)角和解答即可.【詳解】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案為:76°.【考點(diǎn)】本題主要考查了平行線的性質(zhì)和三角形內(nèi)角和定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.5、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進(jìn)行計(jì)算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點(diǎn)O是△ABC的三條角平分線的交點(diǎn),BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯(cuò)誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點(diǎn)】本題主要考查的是三角形與角平分線的綜合運(yùn)用,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.6、20°【解析】【分析】先根據(jù)平行線的性質(zhì),得到∠BDC=50°,再根據(jù)∠ADB=30°,即可得出∠2=20°.【詳解】解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案為:20°.【考點(diǎn)】本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.7、110°【解析】【分析】由DE與AB垂直,利用垂直的定義得到∠BED為直角,進(jìn)而確定出△BDE為直角三角形,利用直角三角形的兩銳角互余,求出∠B的度數(shù),在△ABC中,利用三角形的內(nèi)角和定理即可求出∠ACB的度數(shù).【詳解】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°-∠BED-∠D=45°,又∵∠A=25°,∵∠ACB=180°-(∠A+∠B)=110°.故答案為110°【考點(diǎn)】此題考查了三角形的外角性質(zhì),直角三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)先由平行線的性質(zhì)得∠B=∠C,再由得出,從而利用SAS判定△ABF≌△DCE;(2)根據(jù)全等三角形的性質(zhì)得∠AFB=∠DEC,由等角的補(bǔ)角相等可得∠AFE=∠DEF,再由平行線的判定可得結(jié)論.(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∵∠AFB+∠AFE=180°,∠DEC+∠DEF=180°,∴∠AFE=∠DEF,∴AF∥DE.【考點(diǎn)】本題考查了平行線的判定、全等三角形的判定與性質(zhì),證明△ABF≌△DCE是解題的關(guān)鍵.2、(1)(0,6),(8,0);(2)存在t=2.4時(shí),使得△ODP與△ODQ的面積相等;(3)2∠GOA+∠ACE=∠OHC,理由見解析.【解析】【分析】(1)根據(jù)算術(shù)平方根的非負(fù)性,絕對值的非負(fù)性即可求解;(2)根據(jù)運(yùn)動(dòng)速度得到OQ=t,OP=8-2t,根據(jù)△ODP與△ODQ的面積相等列方程求解即可;(3)由∠AOC=90°,y軸平分∠GOD證得OG∥AC,過點(diǎn)H作HF∥OG交x軸于F,得到∠FHC=∠ACE,∠FHO=∠GOD,從而∠GOD+∠ACE=∠FHO+∠FHC,即可證得2∠GOA+∠ACE=∠OHC.【詳解】解:(1)∵,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案為:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由運(yùn)動(dòng)知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴,,∵△ODP與△ODQ的面積相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4時(shí),使得△ODP與△ODQ的面積相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x軸⊥y軸,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x軸平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如圖,過點(diǎn)H作HF∥OG交x軸于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【考點(diǎn)】此題考查算術(shù)平方根的非負(fù)性,絕對值的非負(fù)性,坐標(biāo)系中的動(dòng)點(diǎn)問題,平行線的判定及性質(zhì)定理,是一道較為綜合的題型.3、見解析【解析】【分析】根據(jù)條件證明△ABC≌△DEF即可得解;【詳解】證明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC與△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF.【考點(diǎn)】本題主要考查了三角形全等的判定與性質(zhì),結(jié)合平行線的性質(zhì)求解是解題的關(guān)鍵.4、證明見解析【解析】【分析】先利用垂直于同一條直線的兩直線平行證明DE∥BC,利用內(nèi)錯(cuò)角相等得∠2=∠DCF,即可證明GF∥DC,再利用平行線的傳遞性即可解題.【詳解】證明:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠2=∠DCF,又∵∠1=∠2,∴∠1=∠DCF,∴GF∥DC,又∵FG⊥AB,∴CD⊥AB.【考點(diǎn)】本題考查了平行線的性質(zhì)和判定,中等難度,熟悉平行線的性質(zhì)是解題關(guān)鍵.5、見解析【解析】【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代換可得到一對內(nèi)錯(cuò)角相等,即∠2=∠3,即可證明結(jié)論.【詳解】證明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC//DE.【考點(diǎn)】本題主要利用了角平分線的性質(zhì)以及內(nèi)錯(cuò)角相等、兩直線平行等知識點(diǎn),靈活運(yùn)用平行線的判定定理成為解答本題的關(guān)鍵.6、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,證明見解析;(3)結(jié)論不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根據(jù)三角形內(nèi)角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根據(jù)三角形內(nèi)角和定理進(jìn)行等量轉(zhuǎn)換,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同樣的方法進(jìn)行等量轉(zhuǎn)換,求解即可判定.【詳解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;

(2)猜想:∠ABP+∠ACP=90°-∠A;

證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論