版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省南雄市中考數(shù)學(xué)真題分類(勾股定理)匯編定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,有一只小鳥從小樹頂飛到大樹頂上,它飛行的最短路程是()A.13米 B.12米 C.5米 D.米2、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn),沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F,已知EF=,則BC的長(zhǎng)是()A. B.3 C.3 D.33、小明想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還多1m,當(dāng)它把繩子的下端拉開4m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高為(
)A.7m B.7.5m C.8m D.9m4、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,那么小巷的寬度為(
)A.0.7米 B.1.5米 C.2.2米 D.2.4米5、在△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形6、已知點(diǎn)是平分線上的一點(diǎn),且,作于點(diǎn),點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),若,則的最小值為(
)A.2 B.3 C.4 D.57、如圖所示的網(wǎng)格是正方形網(wǎng)格,A,B,C,D是網(wǎng)格線交點(diǎn),則與的大小關(guān)系為(
)A. B. C. D.無(wú)法確定第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個(gè)問(wèn)題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長(zhǎng)度單位,1丈10尺)其大意為:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端B恰好到達(dá)池邊的水面D處,問(wèn)水的深度是多少?則水深DE為_____尺.2、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.3、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為______,的值為______.4、如圖,在正方形網(wǎng)格中,點(diǎn)A,B,C,D,E是格點(diǎn),則∠ABD+∠CBE的度數(shù)為_____________.
5、在一棵樹的5米高B處有兩個(gè)猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過(guò)的距離相等,則這棵樹高_(dá)______米.6、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是.7、《九章算術(shù)》中有“折竹抵地”問(wèn)題:“今有竹高一丈,末折抵地,去根三尺,問(wèn)折者高幾何?”題意是:有一根竹子原來(lái)高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問(wèn)折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.8、如圖,圓柱形無(wú)蓋玻璃容器,高18cm,底面周長(zhǎng)為60cm,在外側(cè)距下底1cm的點(diǎn)C處有一蜘蛛,與蜘蛛相對(duì)的圓柱形容器的上口外側(cè)距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長(zhǎng)度為__________cm(容器壁厚度忽略不計(jì)).三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點(diǎn),且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說(shuō)明理由;(2)求△ABC的周長(zhǎng).2、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡(jiǎn)整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當(dāng)n>1時(shí),n2﹣1,2n,B為直角三角形的三邊長(zhǎng),如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ8勾股數(shù)組Ⅱ353、如圖,中,,,是邊上一點(diǎn),且,若.求的長(zhǎng).4、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.5、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測(cè)距儀,測(cè)得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計(jì)算敵方汽車的速度嗎?6、一架云梯長(zhǎng)25m,如圖所示斜靠在一而墻上,梯子底端C離墻7m.(1)這個(gè)梯子的頂端A距地面有多高?(2)如果梯子的頂端下滑了4m,那么梯子的底部在水平方向滑動(dòng)了多少米?7、如圖,某港口位于東西方向的海岸線上.“遠(yuǎn)航”號(hào)、“海天”號(hào)輪船同時(shí)離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號(hào)每小時(shí)航行16海里,“海天”號(hào)每小時(shí)航行12海里.它們離開港口一個(gè)半小時(shí)后分別位于點(diǎn)Q,R處,且相距30海里.如果知道“遠(yuǎn)航”號(hào)沿東北方向航行,能知道“海天”號(hào)沿哪個(gè)方向航行嗎?-參考答案-一、單選題1、A【解析】【分析】根據(jù)題意,畫出圖形,構(gòu)造直角三角形,用勾股定理求解即可.【詳解】如圖所示,過(guò)D點(diǎn)作DE⊥AB,垂足為E,∵AB=13,CD=8,又∵BE=CD,DE=BC,∴AE=AB?BE=AB?CD=13?8=5,∴在Rt△ADE中,DE=BC=12,∴∴AD=13(負(fù)值舍去),故小鳥飛行的最短路程為13m,故選A.【考點(diǎn)】考查勾股定理,畫出示意圖,數(shù)形結(jié)合是解題的關(guān)鍵.2、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對(duì)稱軸,對(duì)稱點(diǎn)的連線被對(duì)稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長(zhǎng)可求,再利用勾股定理即可求出BC的長(zhǎng).【詳解】解:AB=AC,,故選B.【考點(diǎn)】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90°是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)題意,畫出圖形,設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,根據(jù)勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【詳解】如圖所示:設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5.故選B.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解決本題的基本思路是是畫出示意圖,利用勾股定理列方程求解.4、C【解析】【分析】在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點(diǎn)】本題考查勾股定理的運(yùn)用,利用梯子長(zhǎng)度不變找到斜邊是關(guān)鍵.5、B【解析】【分析】根據(jù)勾股定理的逆定理、三角形內(nèi)角和定理、直角三角形定義即可.【詳解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此選項(xiàng)正確;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此選項(xiàng)不正確;C、如果∠A:∠B:∠C=1:3:2,設(shè)∠A=x,則∠B=3x,∠C=2x,則x+3x+2x=180°,解得:x=30°,則3x=90°,∴△ABC是直角三角形,此選項(xiàng)正確;D、如果a2:b2:c2=9:16:25,則a2+b2=c2,∴△ABC是直角三角形,此選項(xiàng)正確;故選:B.【考點(diǎn)】本題考查了三角形內(nèi)角和,勾股定理的逆定理,如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.6、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時(shí),PN最短,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當(dāng)PN⊥OA時(shí),PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點(diǎn)】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.7、C【解析】【分析】根據(jù)每個(gè)小網(wǎng)格都為正方形,設(shè)每個(gè)網(wǎng)格為1,由勾股定理可以求出AD、AC、CD的長(zhǎng),再由勾股定理的逆定理得到△ACD為等腰直角三角形,同理可得△ABC為等腰直角三角形,即∠BAC=∠DAC.【詳解】解:如圖,設(shè)正方形每個(gè)網(wǎng)格的邊長(zhǎng)都為1,連接CD、BC,則,,,,為等腰直角三角形,,同理:,,,,為等腰直角三角形,,.故選:C.【考點(diǎn)】本題考查勾股定理的性質(zhì)、勾股定理的逆定理以及等腰直角三角形的判定,解本題的關(guān)鍵要掌握勾股定理及逆定理的基本知識(shí).二、填空題1、12【解析】【分析】設(shè)水深為h尺,則蘆葦長(zhǎng)為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長(zhǎng)為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.2、8【解析】【分析】作交的延長(zhǎng)于點(diǎn),在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長(zhǎng)于點(diǎn),則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點(diǎn)】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.3、
24
0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.4、45°【解析】【分析】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識(shí),求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.5、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點(diǎn)】本題考查了勾股定理在實(shí)際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.6、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點(diǎn):折疊的性質(zhì),勾股定理點(diǎn)評(píng):折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)的連線段被折痕垂直平分.7、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長(zhǎng)為尺,根據(jù)題意可列方程為:.故答案為:.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.8、34【解析】【分析】首先展開圓柱的側(cè)面,即是矩形,接下來(lái)根據(jù)兩點(diǎn)之間線段最短,可知CF的長(zhǎng)即為所求;然后結(jié)合已知條件求出DF與CD的長(zhǎng),再利用勾股定理進(jìn)行計(jì)算即可.【詳解】如圖為圓柱形玻璃容器的側(cè)面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長(zhǎng)度是34cm.故答案為34.【考點(diǎn)】此題是有關(guān)最短路徑的問(wèn)題,關(guān)鍵在于把立體圖形展開成平面圖形,找出最短路徑;三、解答題1、(1)△BDC為直角三角形,理由見(jiàn)解析;(2)△ABC的周長(zhǎng)為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長(zhǎng),周長(zhǎng)即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長(zhǎng)=2AB+BC=(cm).【考點(diǎn)】本題考查了勾股定理的逆定理,關(guān)鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應(yīng)用解答.2、A=(n2+1)2,B=n2+1,15,17;12,37【解析】【分析】先根據(jù)整式的混合運(yùn)算法則求出A,進(jìn)而求出B,再把n的值代入即可解答.【詳解】A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,當(dāng)2n=8時(shí),n=4,n2﹣1=42﹣1=15,n2+1=42+1=17;當(dāng)n2﹣1=35時(shí),n=±6(負(fù)值舍去),2n=2×6=12,n2+1=37.直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ15817勾股數(shù)組Ⅱ351237故答案為:15,17;12,37.【考點(diǎn)】本題考查了勾股數(shù)的定義及勾股定理的逆定理:已知△ABC的三邊滿足a2+b2=c2,則△ABC是直角三角形.3、AC2=CE2+AE2=102+24∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能趕回巢中.【考點(diǎn)】本題考查了勾股定理的應(yīng)用.關(guān)鍵是構(gòu)造直角三角形,同時(shí)注意:時(shí)間=路程÷速度.2.2【解析】【分析】過(guò)點(diǎn)作于點(diǎn),則,,結(jié)合可得出,進(jìn)而可得出,在中,利用勾股定理可求出的長(zhǎng),即,結(jié)合可求出的長(zhǎng).【詳解】解:過(guò)點(diǎn)作于點(diǎn),如圖所示.,,,.,,.在中,∵,,即,,.又,,.【考點(diǎn)】本題考查了勾股定理、等腰三角形的性質(zhì)以及三角形內(nèi)角和定理,在中,利用勾股定理求出的長(zhǎng)是解題的關(guān)鍵.4、m=1【解析】【分析】根據(jù)勾股數(shù)定義:滿足a2+b2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 撫州市2025年市屬國(guó)有企業(yè)公開招聘員工市國(guó)威安保服務(wù)有限公司押運(yùn)員體能測(cè)評(píng)考試筆試備考題庫(kù)及答案解析
- 2025新疆天筑建工集團(tuán)有限公司市場(chǎng)化招聘36人備考考試試題及答案解析
- 深度解析(2026)《GBT 26019-2010高雜質(zhì)鎢礦化學(xué)分析方法 三氧化鎢量的測(cè)定 二次分離灼燒重量法》
- 2025年福建泉州惠安縣總醫(yī)院(第四季度)招聘工作人員9人備考筆試題庫(kù)及答案解析
- 深度解析(2026)《GBT 25890.1-2010軌道交通 地面裝置 直流開關(guān)設(shè)備 第1部分:總則》(2026年)深度解析
- 2026廣東深圳北理莫斯科大學(xué)學(xué)生工作部學(xué)生管理服務(wù)崗招聘2人考試筆試參考題庫(kù)附答案解析
- 2025廣東省城市技師學(xué)院招聘1人參考考試試題及答案解析
- 深度解析(2026)《GBT 25758.4-2010無(wú)損檢測(cè) 工業(yè)X射線系統(tǒng)焦點(diǎn)特性 第4部分:邊緣方法》
- 深度解析(2026)GBT 25667.2-2010整體硬質(zhì)合金直柄麻花鉆 第2部分:2°斜削平直柄麻花鉆型式與尺寸
- 深度解析(2026)《GBT 25634.2-2010電火花輪胎模加工機(jī)床 第2部分:參數(shù)》(2026年)深度解析
- 濟(jì)南市2025-2030年中小學(xué)及幼兒園布局規(guī)劃方案公示細(xì)節(jié)
- (2025年標(biāo)準(zhǔn))鐵路實(shí)習(xí)協(xié)議書
- 重慶市涪陵榨菜集團(tuán)股份有限公司營(yíng)運(yùn)能力分析
- 與4s店二手車合作合同協(xié)議
- 《中華民族共同體概論》考試復(fù)習(xí)題庫(kù)(含答案)
- 國(guó)家開放大學(xué)《公共政策概論》形考任務(wù)1-4答案
- 學(xué)堂在線 雨課堂 學(xué)堂云 西方哲學(xué)精神探源 期末考試答案
- 2025年楚雄州金江能源集團(tuán)有限公司招聘考試試題【答案】
- 道路應(yīng)急搶修方案
- 頂管穿越公路安全評(píng)估(二篇)
- 人體工程學(xué)-第五章-人體工程學(xué)與室外環(huán)境設(shè)施設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論