2022年山東省萊陽市中考數(shù)學(xué)必背100題附參考答案詳解【模擬題】_第1頁
2022年山東省萊陽市中考數(shù)學(xué)必背100題附參考答案詳解【模擬題】_第2頁
2022年山東省萊陽市中考數(shù)學(xué)必背100題附參考答案詳解【模擬題】_第3頁
2022年山東省萊陽市中考數(shù)學(xué)必背100題附參考答案詳解【模擬題】_第4頁
2022年山東省萊陽市中考數(shù)學(xué)必背100題附參考答案詳解【模擬題】_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省萊陽市中考數(shù)學(xué)必背100題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°2、二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,由圖象可知該拋物線與x軸的交點坐標是(

)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)3、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.4、若m,n是方程x2-x-2022=0的兩個根,則代數(shù)式(m2-2m-2022)(-n2+2n+2022)的值為(

)A.2023 B.2022 C.2021 D.20205、如圖,將繞點順時針旋轉(zhuǎn)得到,使點的對應(yīng)點恰好落在邊上,點的對應(yīng)點為,連接.下列結(jié)論一定正確的是(

)A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、在圖形旋轉(zhuǎn)中,下列說法正確的是(

)A.在圖形上的每一點到旋轉(zhuǎn)中心的距離相等B.圖形上每一點轉(zhuǎn)動的角度相同C.圖形上可能存在不動的點D.圖形上任意兩點的連線與其對應(yīng)兩點的連線長度相等2、下列說法中,不正確的是()A.三點確定一個圓B.三角形有且只有一個外接圓C.圓有且只有一個內(nèi)接三角形D.相等的圓心角所對的弧相等3、請觀察下列美麗的圖案,你認為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4、如圖,AB是的直徑,C是上一點,E是△ABC的內(nèi)心,,延長BE交于點F,連接CF,AF.則下列結(jié)論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則5、如圖,在中,為直徑,,點D為弦的中點,點E為上任意一點,則的大小不可能是(

)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、把一個正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.2、一個圓錐的底面半徑r=6,高h=8,則這個圓錐的側(cè)面積是_____.3、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____4、如圖,是等邊三角形,點D為BC邊上一點,,以點D為頂點作正方形DEFG,且,連接AE,AG.若將正方形DEFG繞點D旋轉(zhuǎn)一周,當AE取最小值時,AG的長為________.5、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.四、簡答題(2小題,每小題10分,共計20分)1、某校一棵大樹發(fā)生一定的傾斜,該樹與地面的夾角.小明測得某時大樹的影子頂端在地面處,此時光線與地面的夾角;又過了一段時間,測得大樹的影子頂端在地面處,此時光線與地面的夾角,若米,求該樹傾斜前的高度(即的長度).(結(jié)果保留一位小數(shù),參考數(shù)據(jù):,,,).2、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達式,與x之間的函數(shù)表達式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達B地這段時間內(nèi),兩人何時相距最近?最近距離是多少?五、解答題(4小題,每小題10分,共計40分)1、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.2、某商場經(jīng)營某種品牌的玩具,購進的單價是30元,根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務(wù),求商場銷售該品牌玩具獲利的最大利潤是多少元?3、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計劃帶弟弟出去玩,放假前他收集了太原動物園、晉祠公園、森林公園、汾河濕地公園四個景點的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機抽取一張(不放回),求兩人抽到動物園和森林公園的概率.4、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經(jīng)過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.-參考答案-一、單選題1、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.2、A【解析】【分析】首先根據(jù)圖像得出拋物線的對稱軸和其中一個交點坐標,然后根據(jù)二次函數(shù)的對稱性即可求得另一個交點坐標.【詳解】解:由圖像可得,拋物線的對稱軸為,與x軸的一個交點坐標為(5,0),∵拋物線與x軸的兩個交點關(guān)于對稱軸對稱,∴拋物線與x軸的另一個交點坐標為(﹣1,0),故選:A.【考點】此題考查了二次函數(shù)與x軸的交點,二次函數(shù)的對稱性,解題的關(guān)鍵是根據(jù)二次函數(shù)的對稱性求出與x軸的另一個交點坐標.3、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點】本題考查了一元二次方程的解的定義和一元二次方程根與系數(shù)的關(guān)系,能根據(jù)已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關(guān)鍵.5、D【解析】【分析】利用旋轉(zhuǎn)的性質(zhì)得AC=CD,BC=EC,∠ACD=∠BCE,所以選項A、C不一定正確再根據(jù)等腰三角形的性質(zhì)即可得出,所以選項D正確;再根據(jù)∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判斷選項B不一定正確即可.【詳解】解:∵繞點順時針旋轉(zhuǎn)得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴選項A、C不一定正確,∴∠A=∠EBC,∴選項D正確.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴選項B不一定正確;故選D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰三角形的性質(zhì).二、多選題1、BCD【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)分別對每一個選項進行判斷即可.【詳解】解:A、由旋轉(zhuǎn)的性質(zhì)可得,圖形上對應(yīng)點到旋轉(zhuǎn)中心的距離相等,故此選項不符合題意;B、由旋轉(zhuǎn)的性質(zhì)可得,圖形上的每一點轉(zhuǎn)動的角度相同,故此選項符合題意;C、由旋轉(zhuǎn)的性質(zhì)可得,圖形上可能存在不動點(例如此點為旋轉(zhuǎn)中心),故此選項符合題意;D、由旋轉(zhuǎn)的性質(zhì)可得,圖形上對應(yīng)兩點的連線與其對應(yīng)兩點的連線相等,故此選項符合題意;故選BCD.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.2、ACD【解析】【分析】根據(jù)不共線三點確定一個圓即可判斷A,B,C選項,根據(jù)同圓或等圓中,相等的圓心角所對的弧相等即可判斷D選項【詳解】不共線三點確定一個圓,故A選項不正確,B選項正確;一個圓上可以找出無數(shù)個不共線的三個點,即可構(gòu)成無數(shù)個三角形,這些三角形都是這個圓的內(nèi)接三角形圓有無數(shù)個內(nèi)接三角形;故C選項不正確;同圓或等圓中,相等的圓心角所對的弧相等,故D選項不正確.故選ACD.【考點】本題考查了圓的內(nèi)接三角形的定義,不共線三點確定一個圓,同圓或等圓中,相等的圓心角所對的弧相等,理解圓的相關(guān)性質(zhì)是解題的關(guān)鍵.3、AB【解析】【分析】根據(jù)軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關(guān)鍵是熟記其概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.4、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關(guān)鍵.5、ACD【解析】【分析】延長ED交⊙O于N,連接OD,并延長交⊙O于M,根據(jù)已知條件知的度數(shù)是80°,根據(jù)點D為弦AC的中點得出,求出、的度數(shù)=40°,即可求出40°<的度數(shù)<80°,再得出答案即可.【詳解】解:延長ED交⊙O于N,連接OD,并延長交⊙O于M,∵∠AOC=80°,∴的度數(shù)是80°,∵點D為弦AC的中點,OA=OC,∴∠AOD=∠COD,∴,即M為的中點,∴、的度數(shù)都是×80°=40°,∵>,∴40°<的度數(shù)<80°,∴20°<∠CED<40°,∴選項ACD符合題意;選項B不符合題意;故選:ACD.【考點】本題考查了圓心角、弧、弦之間的關(guān)系,圓周角定理,等腰三角形的性質(zhì)等知識點,能求出的范圍是解此題的關(guān)鍵.三、填空題1、60【分析】正六邊形連接各個頂點和中心,這些連線會將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點睛】本題考查中心對稱圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.2、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點】本題考查了圓錐的側(cè)面積,勾股定理等知識,解題的關(guān)鍵是記住圓錐的側(cè)面積公式.3、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.4、8【解析】【分析】過點A作于M,由已知得出,得出,由等邊三角形的性質(zhì)得出,,得出,在中,由勾股定理得出,當正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【詳解】過點A作于M,∵,∴,∴,∵是等邊三角形,∴,∵,∴,∴,在中,,當正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,,∴在中,;故答案為8.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及最小值問題;熟練掌握正方形的性質(zhì)和等邊三角形的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】連接OC交AB于點D,再連接OA.根據(jù)軸對稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【考點】本題考查軸對稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識點是解題關(guān)鍵.四、簡答題1、該樹傾斜前高度約為11.3米.【解析】【分析】過A作AH⊥BC于E,解直角三角形即可得到結(jié)論.【詳解】過作于,∵,∴為等腰三角形,設(shè),∵,∴,又在中,∵,∴,即,∴,即,又在中,∴,∴.答:該樹傾斜前高度約為11.3米.【考點】本題考查的是解直角三角形的應(yīng)用?仰角俯角問題,掌握銳角三角函數(shù)的定義、仰角俯角的概念是解題的關(guān)鍵.2、(1)250;(2)當小麗出發(fā)第時,兩人相距最近,最近距離是【解析】【分析】(1)由x=0時,根據(jù)-求得結(jié)果即可;(2)求出兩人相距的函數(shù)表達式,求出最小值即可.【詳解】解(1)當x=0時,=2250,=2000∴-=2250-2000=250(m)故答案為:250(2)設(shè)小麗出發(fā)第時,兩人相距,則即其中因此,當時S有最小值,也就是說,當小麗出發(fā)第時,兩人相距最近,最近距離是【考點】此題主要考查了二次函數(shù)的性質(zhì)的應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解答本題的關(guān)鍵.五、解答題1、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.2、(1),;(2)50元或80元;(3)商場銷售該品牌玩具獲利的最大利潤是10560元【解析】【分析】(1)根據(jù)銷售量與銷售單價之間的變化關(guān)系就可以直接求出y與x之間的關(guān)系式;根據(jù)銷售問題的利潤=售價-進價就可以表示出w與x之間的關(guān)系;(2)根據(jù)題意得方程求得x1=50,x2=80,于是得到結(jié)論;(3)根據(jù)銷售單價不低于45元且商場要完成不少于480件的銷售任務(wù)求得45≤x≤52,根據(jù)二次函數(shù)的性質(zhì)得到當45≤x≤52時,y隨x增大而增大,于是得到結(jié)論.【詳解】解:(1)依等量關(guān)系式“銷量=原銷量-因漲價而減少銷量,總利潤=單個利潤×銷量”可列式為:y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由題意可得:10+1300x30000=10000,解得:x=50或x=80,∴該玩具銷售單價x應(yīng)定為50元或80元(3)由題意可得:,解得:45≤x≤52,W=10+1300x30000=10(+12250,∵10<0,W隨x的增大而減小,又∵45≤x≤52,∴當x=52時,W有最大值,最大值為10560元,∴商場銷售該品牌玩具獲利的最大利潤是10560元.【考點】本題考查了一元二次方程的解法的運用,二次函數(shù)的解析式的運用,二次函數(shù)的頂點式的運用,解答時求出二次函數(shù)的解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論