版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》章節(jié)訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結(jié)論有(
)個A.2 B.3 C.4 D.52、已知,如圖,在△ABC中,D為BC邊上的一點(diǎn),延長AD到點(diǎn)E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個數(shù)有(
)A.1個 B.2個 C.3個 D.4個3、作平分線的作圖過程如下:作法:(1)在和上分別截取、,使.(2)分別以,為圓心,大于的長為半徑作弧,兩弧交于點(diǎn).(3)作射線,則就是的平分線.用下面的三角形全等的判定解釋作圖原理,最為恰當(dāng)?shù)氖牵?/p>
)A. B. C. D.4、如圖,已知,下面甲、乙、丙、丁四個三角形中,與全等的是(
)A.甲 B.乙 C.丙 D.丁5、如圖,△ABC與△DEF是全等三角形,則圖中的相等線段有(
)A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,則∠AOB=_________.2、如圖,在中,,AD是的角平分線,過點(diǎn)D作,若,則______.3、如圖,兩根旗桿間相距20米,某人從點(diǎn)B沿BA走向點(diǎn)A,一段時間后他到達(dá)點(diǎn)M,此時他分別仰望旗桿的頂點(diǎn)C和D,兩次視線的夾角為90°,且CM=DM.已知旗桿BD的高為12米,該人的運(yùn)動速度為2米/秒,則這個人運(yùn)動到點(diǎn)M所用時間是__________秒.4、已知:如圖,是上一點(diǎn),平分,,若,則________.(用的代數(shù)式表示)5、如圖,在和中,,,直線交于點(diǎn)M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號).三、解答題(5小題,每小題10分,共計(jì)50分)1、已知△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,點(diǎn)D在直線BC上.(1)如圖1,當(dāng)點(diǎn)D在CB延長線上時,求證:BE⊥CD;(2)如圖2,當(dāng)D點(diǎn)不在直線BC上時,BE、CD相交于M,①直接寫出∠CME的度數(shù);②求證:MA平分∠CME2、如圖,已知△ABC.求作:BC邊上的高與內(nèi)角∠B的角平分線的交點(diǎn).3、如圖,在中,,點(diǎn)在邊上,使,過點(diǎn)作,分別交于點(diǎn),交的延長線于點(diǎn).求證:.4、如圖,點(diǎn)E在邊AC上,已知AB=DC,∠A=∠D,BC∥DE,求證:DE=AE+BC.5、如圖,在五邊形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線.(1)求證:△ABE≌△DCE;(2)當(dāng)∠A=80°,∠ABC=140°,時,∠AED=_________度(直接填空).-參考答案-一、單選題1、B【解析】【分析】①正確.利用三角形內(nèi)角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯誤.利用反證法,假設(shè)成立,推出矛盾即可.④錯誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個顯然與條件矛盾,故③錯誤故選B.【考點(diǎn)】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理,三角形的面積等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.2、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等知點(diǎn)A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯誤;故選C.【考點(diǎn)】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對的圓周角相等、三角形內(nèi)角和的相關(guān)知識,靈活運(yùn)用所學(xué)知識是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)作圖過程可得OD=OE,CE=CD,根據(jù)OC為公共邊,利用SSS即可證明△OCE≌△OCD,即可得答案.【詳解】∵分別以,為圓心,大于的長為半徑作弧,兩弧交于點(diǎn);∴CE=CD,在△OCE和△OCD中,,∴△OCE≌△OCD(SSS),故選:A.【考點(diǎn)】本題考查全等三角形的判定,正確找出相等的線段并熟練掌握全等三角形的判定定理是解題關(guān)鍵.4、B【解析】【分析】根據(jù)全等三角形的判定定理逐判定即可.【詳解】解:A.△ABC和甲所示三角形只有一邊一角對應(yīng)相等,無法判定它們?nèi)?,故本選項(xiàng)不符合題意;B.△ABC和乙所示三角形有兩邊及其夾角對應(yīng)相等,根據(jù)SAS可判定它們?nèi)?,故本選項(xiàng)符合題意;C.△ABC和丙所示三角形有兩邊一角相等,但不是對應(yīng)的兩邊一角,無法判定它們?nèi)?,故本選項(xiàng)不符合題意;;D.△ABC和丁所示三角形有兩角對應(yīng)相等,有一邊相等,但相等邊不是兩角的夾邊,所以兩角一邊不是對應(yīng)相等,無法判定它們?nèi)?,故本選項(xiàng)不符合題意;;故選:B.5、D【解析】【分析】全等三角形的對應(yīng)邊相等,據(jù)此可得出AB=DE,AC=DF,BC=EF;再根據(jù)BC-EC=EF-EC,可得出一組線段相等,據(jù)此找出組數(shù),問題可解.【詳解】∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC-EC=EF-EC,即BE=CF.故共有四組相等線段.故選D.【考點(diǎn)】本題主要考查全等三角形的性質(zhì),全等三角形的對應(yīng)邊相等.二、填空題1、60°或60度【解析】【分析】根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上判斷出OC平分∠AOB,再根據(jù)角平分線的定義可得∠AOB=2∠BOC.【詳解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案為:60°.【考點(diǎn)】本題考查了角平分線的判定,掌握角平分線的判定是解題的關(guān)鍵.2、7【解析】【分析】先利用角平分線性質(zhì)證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點(diǎn)D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),解題的關(guān)鍵是熟練掌握角平分線的性質(zhì).3、4【解析】【分析】根據(jù)角的等量代換求出,便可證出,利用全等的性質(zhì)得到,從而求出的長,再通過時間=路程÷速度列式計(jì)算即可.【詳解】解:根據(jù)題意可得:,,,∵∴又∵∴∴在和中∴∴∴∴時間=故答案為4【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì),利用角的等量代換找出三角形全等的條件是解題的關(guān)鍵.4、【解析】【分析】過點(diǎn)D分別作DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì)得到DE=DF,根據(jù)表示出DE的長度,進(jìn)而得到DF的長度,然后即可求出的值.【詳解】如圖,過點(diǎn)D分別作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案為:.【考點(diǎn)】此題考查了角平分線的性質(zhì)定理,三角形面積的表示方法,解題的關(guān)鍵是根據(jù)題意正確作出輔助線.5、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點(diǎn)】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關(guān)鍵.三、解答題1、(1)見解析(2)①90°;②見解析【解析】【分析】(1)先推出∠CAD=∠BAE,∠C=∠ABC=45°,然后證明△CAD≌△BAE得到∠ABE=∠C=45°,則∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)①同理可證△BAE≌△CAD,得到∠ABE=∠ACD,再由∠EMC=∠EBC+∠BCD,得到∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如圖,過點(diǎn)A作AG⊥BE于G,AF⊥CD于F,由△BAE≌△CAD,得到AG=AF,證明Rt△AGM≌Rt△AFM得到∠AMG=∠AMF,即AM平分∠EMC.(1)解:∵△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AE=AD,∠DAE+∠DAB=∠CAB+∠DAB,∴∠CAD=∠BAE,∠C=∠ABC=45°,∴△CAD≌△BAE(SAS),∴∠ABE=∠C=45°,∴∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)解:①同理可證△BAE≌△CAD,∠ABC=∠ACB=90°,∴∠ABE=∠ACD,∵∠EMC=∠EBC+∠BCD,∴∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如圖,過點(diǎn)A作AG⊥BE于G,AF⊥CD于F,∵△BAE≌△CAD,∴AG=AF,在Rt△AGM和Rt△AFM中,,∴Rt△AGM≌Rt△AFM(HL),∴∠AMG=∠AMF,即AM平分∠EMC.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.2、詳見解析.【解析】【分析】過點(diǎn)A作BC的垂線,作出∠B的平分線,二者交點(diǎn)即為所求的點(diǎn).【詳解】如圖:∴P點(diǎn)即為所求【考點(diǎn)】本題考查了尺規(guī)作圖,熟練掌握垂線和角平分線的作圖步驟是解答本題的關(guān)鍵.3、詳見解析【解析】【分析】根據(jù)得出,再根據(jù),故,證明≌即可證明.【詳解】∵,∴.∵,∴.在和中,,∴≌(AAS),∴.【考點(diǎn)】本題考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 春季登山活動策劃方案(3篇)
- 內(nèi)業(yè)資料培訓(xùn)課件
- 網(wǎng)格化聯(lián)絡(luò)群管理制度(3篇)
- 觀光車管理制度內(nèi)容(3篇)
- 獸藥執(zhí)法案例培訓(xùn)課件
- 麻城疫情隔離人員管理制度(3篇)
- 《GA 523-2004警車外觀制式涂裝用定色漆》專題研究報(bào)告
- 《GAT 737-2011保安服務(wù)監(jiān)管信息基本數(shù)據(jù)項(xiàng)》專題研究報(bào)告
- 兼職崗前培訓(xùn)課件
- 兼職仲裁員業(yè)務(wù)培訓(xùn)課件
- 藥店物價(jià)收費(fèi)員管理制度
- 數(shù)據(jù)風(fēng)險(xiǎn)監(jiān)測管理辦法
- 國家開放大學(xué)《公共政策概論》形考任務(wù)1-4答案
- 肝惡性腫瘤腹水護(hù)理
- 兒童語言發(fā)育遲緩課件
- 2025年河南省鄭州市中考一模英語試題及答案
- 《高等職業(yè)技術(shù)院校高鐵乘務(wù)專業(yè)英語教學(xué)課件》
- DB15T 3758-2024基本草原劃定調(diào)整技術(shù)規(guī)程
- 醫(yī)學(xué)類單招入學(xué)考試題庫及答案(修正版)
- 腦機(jī)接口技術(shù)在疼痛管理中的應(yīng)用研究
- 《項(xiàng)目經(jīng)理安全管理培訓(xùn)課件》
評論
0/150
提交評論