重難點解析青島版8年級數(shù)學下冊期末試卷附參考答案詳解(考試直接用)_第1頁
重難點解析青島版8年級數(shù)學下冊期末試卷附參考答案詳解(考試直接用)_第2頁
重難點解析青島版8年級數(shù)學下冊期末試卷附參考答案詳解(考試直接用)_第3頁
重難點解析青島版8年級數(shù)學下冊期末試卷附參考答案詳解(考試直接用)_第4頁
重難點解析青島版8年級數(shù)學下冊期末試卷附參考答案詳解(考試直接用)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

青島版8年級數(shù)學下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,已知中,,是的中位線,,,則(

)A. B. C. D.2、二次根式有意義,則x滿足的條件是()A.x<2 B.x>2 C.x≥2 D.x≤23、如圖,是等邊三角形,點P在內(nèi),,將PAB繞點A逆時針旋轉(zhuǎn)得到,則PQ的長等于(

)A.6 B. C.3 D.24、2022年新年賀詞中提到“人不負青山,青山定不負人”,下列四個有關(guān)環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(

)A. B. C. D.5、與是同類二次根式的是(

)A. B. C. D.6、如圖,公路AC、BC互相垂直,公路AB的中點M與點C被湖隔開,若測得AB的長為3.6km,則M、C兩點間的距離為()A.1.8km B.3.6km C.3km D.2km7、如圖,直線與x軸、y軸交于A、B兩點,在y軸上有一點C(0,4),動點M從A點發(fā)以每秒1個單位的速度沿x軸向左移動.當動到△COM與△AOB全等時,移的時間t是(

)A.2 B.4 C.2或4 D.2或68、若是關(guān)于x的一元一次方程,則m的值為(

)A. B.3 C. D.1第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、若一個直角三角形的三邊長分別為x,12,13,則x=_____.2、我國古代數(shù)學著作《九章算術(shù)》中記載了一個問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達池邊的水面D處,問水的深度是多少?則水深DE為_____尺.3、如圖,△ABC中,∠ACB=90°,AC=8,BC=6,點E是AB中點,將△CAE沿著直線CE翻折,得到△CDE,連接BD,則線段BD的長等于______.4、如圖,點A坐標為(-4,-4),點B(0,m)在y軸的負半軸上沿負方向運動時,作Rt△ABC,其中∠BAC=90°.直線AC與x軸正半軸交于點C(n,0),當B點的運動過程中時,則m+n的值為______.5、如圖,在平面直角坐標系xOy中,矩形OABC的頂點B坐標為(12,5),D是CB邊上一動點,(D不與BC重合),以AD為邊作正方形ADEF,連接BE、BF,若為等腰三角形,則正方形ADEF的邊長_____.6、請寫出一個y隨x的增大而減小的函數(shù)解析式_____.7、如圖,某自動感應(yīng)門的正上方A處裝著一個感應(yīng)器,離地面的高度AB為2.5米,一名學生站在C處時,感應(yīng)門自動打開了,此時這名學生離感應(yīng)門的距離BC為1.2米,頭頂離感應(yīng)器的距離AD為1.5米,則這名學生身高CD為_____米.三、解答題(7小題,每小題10分,共計70分)1、我校為了豐富校園活動,計劃購買乒乓球拍和羽毛球拍共100副,其中乒乓球拍每副50元,羽毛球拍每副100元,(1)若購買兩種球拍剛好用去8000元,則購買兩種球拍各多少副?(2)若購買羽毛球拍的數(shù)量不少于乒乓球拍的數(shù)量,請設(shè)計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.2、已知:如圖,在中,,是的角平分線,,,垂足分別為、.求證:四邊形是正方形.3、已知與成正比例,且時.(1)試求與之間的函數(shù)表達式;(2)若點在這個函數(shù)圖象上,求的值.4、已知:如圖,一次函數(shù)的圖像分別與x軸、y軸相交于點A、B,且與經(jīng)過x軸負半軸上的點C的一次函數(shù)y=kx+b的圖像相交于點D,直線CD與y軸相交于點E,E與B關(guān)于x軸對稱,OA=3OC.(1)直線CD的函數(shù)表達式為______;點D的坐標______;(直接寫出結(jié)果)(2)點P為線段DE上的一個動點,連接BP.①若直線BP將△ACD的面積分為兩部分,試求點P的坐標;②點P是否存在某個位置,將△BPD沿著直線BP翻折,使得點D恰好落在直線AB上方的坐標軸上?若存在,求點P的坐標;若不存在,請說明理由.5、如圖,在△ABC和△CDE中,∠ABC=∠CDE=90°,且AC⊥CE,AC=CE.(1)求證:(2)若AC=13,DE=5,求DB的長.6、如圖,在△ABC中,∠ACB=90°,BC>AC,CD⊥AB于點D,點E是AB的中點,連接CE.(1)若AC=3,BC=4,求CD的長;(2)求證:BC2﹣AC2=2DE?AB;(3)求證:CE=AB.7、如圖,矩形ABCD中,E、F分別為邊AD和BC上的點,BE=DF,求證:DE=BF.-參考答案-一、單選題1、C【解析】【分析】在中利用勾股定理即可求出AC的長,再根據(jù)三角形中位線的性質(zhì),即可求出DE的長.【詳解】解:在中,,是的中位線,,故選:C.【點睛】本題考查勾股定理和三角形中位線的性質(zhì),掌握三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半是解題關(guān)鍵.2、B【解析】【分析】根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于等于0,分母不等于0,列不等式求解.【詳解】解:根據(jù)題意得:x﹣2>0,解得,x>2.故選:B.【點睛】主要考查了二次根式的意義和性質(zhì).概念:式子(a≥0)叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.當二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.3、A【解析】【分析】由旋轉(zhuǎn)以及是等邊三角形可證△AQP為等邊三角形,進而可知PQ的長度.【詳解】解:∵△ABC為等邊三角形,∴∠BAC=60°,∴∠PAB+∠CAP=60°,∵∠PAB=∠QAC,∴∠QAC+∠PAC=60°,∵AP=AQ,∴△AQP為等邊三角形,∴PQ=AP=6,故選:A.【點睛】本題考查旋轉(zhuǎn)變換,以及等邊三角形的性質(zhì),熟練掌握等邊三角形的性質(zhì)是解決本題的關(guān)鍵.4、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:B.【點睛】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關(guān)鍵.5、D【解析】【分析】將各選項化簡,被開方數(shù)是2的二次根式是的同類二次根式,從而得出答案.【詳解】解:A選項,,故該選項不符合題意;B選項,是最簡二次根式,被開方數(shù)不是2,故該選項不符合題意;C選項,=2,故該選項不符合題意;D選項,,故該選項符合題意;故選:D.【點睛】本題考查了同類二次根式,二次根式的性質(zhì)與化簡,掌握一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式是解題的關(guān)鍵.6、A【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊上的一半可求解.【詳解】解:∵AC⊥BC,∴∠ACB=90°,∵M點是AB的中點,AB=3.6km,∴CM=AB=1.8km.故選:A.【點睛】本題主要考查直角三角形斜邊上的中線,掌握直角三角形斜邊上的中線的性質(zhì)是解題的關(guān)鍵.7、D【解析】【分析】先求解的坐標,再利用全等三角形的性質(zhì)求解再結(jié)合軸對稱的性質(zhì)可得答案.【詳解】解:直線與x軸、y軸交于A、B兩點,令則令,則而當時,而如圖,當關(guān)于軸對稱時,此時此時故選:D【點睛】本題考查的是一次函數(shù)的性質(zhì),全等三角形的判定與性質(zhì),熟悉全等三角形的基本圖形是解本題的關(guān)鍵.8、A【解析】【分析】根據(jù)一元一次方程的定義,可列方程和不等式,即可求m的值.【詳解】解:∵是關(guān)于x的一元一次方程,∴,解得,故選:A.【點睛】本題考查了一元一次方程的定義,絕對值,利用一元一次方程的定義解決問題是本題的關(guān)鍵.二、填空題1、5或##或5【解析】【分析】由于此題中直角三角形的斜邊不能確定,故應(yīng)分5是直角三角形的斜邊和直角邊兩種情況討論.【詳解】解:∵這個直角三角形的三邊長分別為x,12,13,∴①當13是此直角三角形的斜邊時,由勾股定理得到:x==5;②當12,13是此直角三角形的直角邊時,由勾股定理得到:x=.故選:5或.【點睛】本題考查的是勾股定理,解答此題時要注意要分類討論,不要漏解.2、12【解析】【分析】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【點睛】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.3、【解析】【分析】延長CE交AD于F,過B作BG⊥CE于G,利用△BCE的面積,即可得到BG的長,再根據(jù)△AEF與△BEG全等,即可得到AF的長,進而得到AD的長,再證明再利用勾股定理可得答案.【詳解】解:如圖,延長CE交AD于F,過B作BG⊥CE于G,連接BD,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠ACB=90°,點E是AB中點,∴CE=AE=BE=5,S△BCE=S△ABC,∴CE×BG=AC×BC,即,由折疊可得,CF垂直平分AD,∴∠AFE=90°=∠BGE,又∵∠AEF=∠BEG,AE=BE,∴△AEF≌△BEG(AAS),∴AF=BG=,∴AD=2AF=故答案為【點睛】本題考查了軸對稱以及直角三角形斜邊中線的性質(zhì),線段的垂直平分線的判定與性質(zhì),勾股定理的應(yīng)用,全等三角形的判定與性質(zhì),解題的關(guān)鍵是作輔助線構(gòu)造全等三角形.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.4、-8【解析】【分析】根據(jù)勾股定理和坐標的性質(zhì),分別計算得、、,結(jié)合∠BAC=90°,根據(jù)勾股定理的性質(zhì)計算,即可得到答案.【詳解】根據(jù)題意,得:∵∠BAC=90°∴∴∴∴故答案為:-8.【點睛】本題考查了勾股定理、直角坐標系的知識;解題的關(guān)鍵是熟練掌握勾股定理的性質(zhì),從而完成求解.5、或或【解析】【分析】分三種情況討論,由等腰三角形的性質(zhì)和勾股定理可求正方形ADEF的邊長.【詳解】解:若BE=EF,當點B與點D重合時,AD=AB=5,舍去,當點B與點D不重合時,如圖,過點E作EH⊥DB于H,∵∠EDH+∠ADB=90°,∠ADB+∠DAB=90°,∴∠EDH=∠DAB,且AD=DE,∠EHD=∠ABD=90°,∴△ADB≌△DEH(AAS),∴DH=AB=5,∵BE=EF,EF=DE,∴DE=BE,且EH⊥DB,∴DH=BH=5,∴DB=10,∴AD=;當BE=BF時,∴∠BEF=∠BFE,∴∠DEB=∠AFB,且DE=AF,BE=BF,∴△DEB≌△AFB(AAS),∴DB=AB=5,∴AD=;若BF=EF,如圖,過點F作FH⊥AB于H,∵∠DAB+∠FAB=90°,且∠DAB+∠BDA=90°,∴∠BDA=∠FAB,且AD=AF,∠ABD=∠AHF=90°,∴△ABD≌△FHA(AAS),∴AH=DB,∵EF=BF,EF=AF,∴BF=AF,且FH⊥AB,∴AH=BH=,∴DB=,∴AD==,故答案為:或或.【點睛】本題考查了全等三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì),添加恰當輔助線構(gòu)造全等三角形是本題的關(guān)鍵.6、答案不唯一,y=-x.【解析】【分析】根據(jù)函數(shù)的增減性,去選擇函數(shù).【詳解】根據(jù)題意,得y=-x,故答案為:y=-x.【點睛】本題考查了函數(shù)的增減性,熟練掌握函數(shù)的增減性是解題的關(guān)鍵.7、1.6【解析】【分析】過點D作DE⊥AB于E,則CD=BE,DE=BC=1.2米,由勾股定理得出AE=0.9(米),則BE=AB-AE=1.6(米),即可得出答案.【詳解】解:過點D作DE⊥AB于E,如圖所示:則CD=BE,DE=BC=1.2米=米,在Rt△ADE中,AD=1.5米=米,由勾股定理得:AE==0.9(米),∴BE=AB-AE=2.5-0.9=1.6(米),∴CD=BE=1.6米,故答案為:1.6.【點睛】本題考查了勾股定理的應(yīng)用,正確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.三、解答題1、(1)購買乒乓球40副,羽毛球60副;(2)購買乒乓球50副,羽毛球50副時所需總費用最低,該購買方案所需總費用為7500元【解析】【分析】(1)設(shè)購買乒乓球a副,則購買羽毛球(100-a)副,根據(jù)購買兩張球拍剛好用去8000元列方程求解即可;(2)設(shè)購買乒乓球x副,則購買羽毛球(100-x)副,先根據(jù)題意求得x的取值范圍,再根據(jù)一次函數(shù)的增減性求解即可.(1)解:設(shè)購買乒乓球a副,則購買羽毛球(100-a)副,根據(jù)題意,得:50a+100(100-a)=8000,解得:a=40,100-40=60(副),答:購買乒乓球40副,羽毛球60副;(2)解:設(shè)購買乒乓球x副,則購買羽毛球(100-x)副,設(shè)總費用為W元,∵購買羽毛球拍的數(shù)量不少于乒乓球拍的數(shù)量,∴100-x≥x,解得:x≤50,設(shè)總費用為W元,根據(jù)題意,W=50x+100(100-x)=-50x+10000,∵-50<0,∴W隨x的增大而減小,∴當x=50時,W最小,最小值為-50×50+10000=7500元,答:購買乒乓球50副,羽毛球50副時所需總費用最低,該購買方案所需總費用為7500元.【點睛】本題考查一元一次方程的應(yīng)用、一元一次不等式的應(yīng)用、一次函數(shù)的應(yīng)用,理解題意,找準等量關(guān)系是解答的關(guān)系.2、見解析【解析】【分析】根據(jù)題意先證明四邊形是矩形,根據(jù),即可矩形是正方形.【詳解】證明:∵平分,,,∴,,,又∵,∴四邊形是矩形,∵,∴矩形是正方形.【點睛】本題考查正方形的判定、角平分線的性質(zhì)和矩形的判定.要注意判定一個四邊形是正方形,必須先證明這個四邊形為矩形或菱形.3、(1);(2)【解析】【分析】(1)由題意可設(shè),把條件代入可求得與的函數(shù)關(guān)系式;(2)把代入函數(shù)解析式可求得答案.(1)與成正比例,可設(shè),當時,,,解得,,與的函數(shù)關(guān)系式為;(2)當時,代入函數(shù)解析式可得,解得..【點睛】本題主要考查待定系數(shù)法的應(yīng)用,掌握待定系數(shù)法的應(yīng)用步驟是解題的關(guān)鍵4、(1),(-4,-6)(2)①點坐標為或;②存在,點坐標為或【解析】【分析】(1)由求出與的交點坐標,進而得到E,C兩點坐標,然后代入,求解的值,進而可得直線CD的函數(shù)表達式;D點為直線AB與直線CD的交點,聯(lián)立方程組求解即可.(2)①分情況求解:情況一,如圖1,當P在CD上,設(shè),過B作軸交CD于點M,將代入求解得到點M的坐標,根據(jù),求解的值,進而得到點坐標;情況二,如圖2,當P在CE上,設(shè)PB與x軸交于G,根據(jù),解得的值,得到點坐標,設(shè)直線的解析式為,將B,G點坐標代入求解的值,得直線的解析式,P為直線與直線CD的交點,聯(lián)立方程組求解即可.②分情況求解:情況一,如圖3,當D落在x軸上(記為)時,作DH⊥y軸于點H,BH=OB=3,由翻折可知,,證明,,可得,PB∥x軸,可得P點縱坐標,代入解析式求解即可得點的坐標;情況二,如圖4,當D落在y軸上(記為)時,作PM⊥BD,PN⊥OB,由翻折可知:,證明,有PM=PN,由,,,解得的值,將代入中得的值,即可得到點坐標.(1)解:將代入得∴點B的坐標為將代入得,解得∴點A的坐標為∴由題意知點E,C坐標分別為,將E,C兩點坐標代入得解得:∴直線CD的函數(shù)表達式為;聯(lián)立方程組解得∴D點坐標為;故答案為:;.(2)①解:分情況求解,情況一,如圖1,當P在CD上,設(shè),過B作軸交CD于點M∴將代入中得解得∴點M的坐標為由題意得∴解得∴點坐標為;情況二,如圖2,當P在CE上,設(shè)PB與x軸交于G由題意知:解得∴點坐標為設(shè)直線的解析式為將B,G點坐標代入得解得∴直線的解析式為聯(lián)立方程組解得∴點P的坐標為;綜上所述,點P的坐標為或.②解:分情況求解:情況一,如圖3,當D落在x軸上(記為)時,作DH⊥y軸于點H∴BH=OB=3由翻折可得:,∵°在和中∴∴∵∴∴°∴PB∥x軸∴P點縱坐標為將代入中得解得∴點的坐標為;情況二,如圖4,當D落在y軸上(記為)時,作PM⊥BD于M,PN⊥OB于N由翻折可得:在和中∴∴PM=PN∵,,∴解得將代入中得解得∴點坐標為;綜上所述,存在點,且點坐標為或.【點睛】本題考查了一次函數(shù)的解析式,翻折的性質(zhì),全等三角形的判定與性質(zhì),解二元一次方程組.解題的關(guān)鍵在于對知識的靈活運用.5、(1)見解析(2)7【解析】【分析】(1)由AC⊥CE,∠ABC=∠CDE=90°,易證∠DCE=∠A.即可利用“AAS”證明△ABC≌△CDE.(2)由全等三角形的性質(zhì)可知BC=DE=5,CE=13.再在中,利用勾股定理即可求出CD的長,從而可求出DB的長.(1)證明:∵AC⊥CE,∠ABC=∠CDE=90°,∴∠BCA+∠DCE=90°,∠A+∠BCA=90°∴∠DCE=∠A.∴在△ABC和△CDE中,,∴△ABC≌△CDE(AAS).(2)∵△ABC≌△CDE,DE=5,AC=13∴BC=DE=5,CE=13∴在中,∴.【點睛】本題考查全等三角形的判定和性質(zhì),勾股定理.掌握全等三角形的判定條件是解答本題的關(guān)鍵.6、(1)(2)見解析(3)見解析【解析】【分析】(1)根據(jù)勾股定理求出AB,根據(jù)三角形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論