版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省老河口市中考數(shù)學真題分類(勾股定理)匯編專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.452、如圖,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,連接AE,BD交于點F,則BF的長為(
)A. B. C. D.3、如圖,在中,,cm,cm,點、分別在、邊上.現(xiàn)將沿翻折,使點落在點處.連接,則長度的最小值為(
)A.0 B.2 C.4 D.64、如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.805、如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為(
)A.0.7米 B.1.5米 C.2.2米 D.2.4米6、下面圖形能夠驗證勾股定理的有()個A.4個 B.3個 C.2個 D.1個7、下列四組數(shù)中,是勾股數(shù)的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,已知中,,,動點M滿足,將線段繞點C順時針旋轉得到線段,連接,則的最小值為_________.2、如圖,將矩形紙片ABCD沿EF折疊,使D點與BC邊的中點D′重合.若BC=8,CD=6,則CF的長為_________________.3、勘測隊按實際需要構建了平面直角坐標系,并標示了A,B,C三地的坐標,數(shù)據如圖(單位:km).筆直鐵路經過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.4、學習完《勾股定理》后,尹老師要求數(shù)學興趣小組的同學測量學校旗桿的高度.同學們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長度未知.如圖,經測量,繩子多出的部分長度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為______米.5、我國古代的數(shù)學名著《九章算術》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設繩索的長為尺,根據題意,可列方程為__________.6、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.7、如圖,學校有一塊長方形草坪,有極少數(shù)人為了避開拐角走“捷徑”,在草坪內走出了一條“路”,他們僅僅少走了________步路(假設步為米),卻踩傷了花草.8、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點E,交CB于點F,點F是的中點.若的面積為12,,則點F到AC的距離為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,AD是△ABC的中線,DE⊥AC于點E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長.2、已如:如圖,四邊形中,,求四邊形的面積.3、臺風是一種自然災害,它以臺風中心為圓心在周圍上千米的范圍內形成極端氣候,有極強的破壞力,有一臺風中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風中心為圓心周圍250km以內為受影響區(qū)域.(1)海港C會受臺風影響嗎?為什么?(2)若臺風的速度為20km/h,臺風影響該海港持續(xù)的時間有多長?4、閱讀與思考:請閱讀下列材料,并完成相應的任務.若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構造勾股數(shù),就是要尋找3個正整數(shù),使它們滿足“其中兩個數(shù)的平方和(或平方差)等于第三個數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當一組勾股數(shù)中(),最小數(shù)為奇數(shù)時,另兩個正整數(shù)和滿足比且,解得,.任務:(1)請證明猜想成立,即證明,,構成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個數(shù)分別是________和________.5、湖的兩岸有A,B兩棵景觀樹,數(shù)學興趣小組設計實驗測量兩棵景觀樹之間的距離,他們在與AB垂直的BC方向上取點C,測得米,米.求:(1)兩棵景觀樹之間的距離;(2)點B到直線AC的距離.6、如圖,中,,,是邊上一點,且,若.求的長.7、我國古代的數(shù)學名著《九章算術》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠.問:折處離地還有多高的竹子?(1丈=10尺)-參考答案-一、單選題1、A【解析】【分析】設正方形D的面積為x,根據圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據圖形得:2+4=x?3.解得:x=9.故選A.【考點】本題考查了勾股定理,根據圖形推出四個正方形的關系是解決問題的關鍵.2、B【解析】【分析】由已知證得,進而確定三個內角的大小,求得,進而可得到答案.【詳解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故選:B.【考點】本題考查全等三角形的判定和性質,勾股定理;熟練掌握相關知識是解題的關鍵.3、C【解析】【分析】當H落在AB上,點D與B重合時,AH長度的值最小,根據勾股定理得到AB=10cm,由折疊的性質知,BH=BC=6cm,于是得到結論.【詳解】解:當H落在AB上,點D與B重合時,AH長度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質是解題的關鍵.4、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.5、C【解析】【分析】在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.6、A【解析】【分析】分別計算圖形的面積進行證明即可.【詳解】解:A、由可得,故該項的圖形能夠驗證勾股定理;B、由可得,故該項的圖形能夠驗證勾股定理;C、由可得,故該項的圖形能夠驗證勾股定理;D、由可得,故該項的圖形能夠驗證勾股定理;故選:A.【考點】此題考查了圖形與勾股定理的推導,熟記勾股定理的計算公式及各種圖形面積的計算方法是解題的關鍵.7、A【解析】【分析】欲判斷是否為勾股數(shù),必須根據勾股數(shù)是正整數(shù),同時還需驗證兩小邊的平方和是否等于最長邊的平方.【詳解】解:A、52+122=132,都是正整數(shù),是勾股數(shù),故此選項符合題意;B、42+52≠62,不是勾股數(shù),故此選項不合題意;C、22+32≠42,不是勾股數(shù),故此選項不合題意;D、,不是正整數(shù),不是勾股數(shù),故此選項不合題意;故選:A.【考點】此題主要考查了勾股數(shù),解答此題要用到勾股數(shù)組的定義,如果a,b,c為正整數(shù),且滿足a2+b2=c2,那么,a、b、c叫做一組勾股數(shù).二、填空題1、##【解析】【分析】證明△AMC≌△BNC,可得,再根據三角形三邊關系得出當點N落在線段AB上時,最小,求出最小值即可.【詳解】解:∵線段繞點C順時針旋轉得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點】本題考查了全等三角形的判定與性質,勾股定理,解題關鍵是證明三角形全等,得出,根據三角形三邊關系取得最小值.2、【解析】【分析】設,在中利用勾股定理求出x即可解決問題.【詳解】解:∵是的中點,,,∴,由折疊的性質知:,設,則,在中,根據勾股定理得:,即:,解得,∴.故答案為:【考點】本題考查翻折變換、勾股定理,解題的關鍵是利用翻折不變性解決問題,學會轉化的思想,利用方程的去思考問題,屬于中考??碱}型.3、
20
13【解析】【分析】(1)由垂線段最短以及根據兩點的縱坐標相同即可求出AB的長度;(2)根據A、B、C三點的坐標可求出CE與AE的長度,設CD=x,根據勾股定理即可求出x的值.【詳解】(1)由A、B兩點的縱坐標相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點C作l⊥AB于點E,連接AC,作AC的垂直平分線交直線l于點D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點】本題考查了勾股定理,解題的關鍵是根據A、B、C三點的坐標求出相關線段的長度,本題屬于中等題型.4、7.5;【解析】【分析】旗桿、拉直的繩子與地面構成直角三角形,根據題中數(shù)據,用勾股定理即可解答.【詳解】解:如圖,設旗桿的長度為xm,則繩子的長度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點】本題考查的是勾股定理的應用,根據題意得出直角三角形是解答此題的關鍵.5、x2?(x?3)2=82【解析】【分析】設繩索長為x尺,根據勾股定理列出方程解答即可.【詳解】解:設繩索長為x尺,根據題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點】本題考查了勾股定理的應用,找準等量關系,正確列出相應方程是解題的關鍵.6、15【解析】【分析】根據勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.7、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據勾股定理求得AB的長即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點】本題考查正確運用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關鍵.8、【解析】【分析】過點F作FH⊥AC于點H,由翻折的性質可知S△AA'D=24,由D為AB的中點,則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點F作FH⊥AC于點H,根據翻折的性質得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點,∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點,∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點F到AC的距離為,故答案為:.【考點】本題主要考查了翻折的性質,全等三角形的判定與性質,勾股定理等知識,運用等積法求垂線段的長是解題的關鍵.三、解答題1、(1)見解析(2)DF的長為5.【解析】【分析】(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;(2)根據三角形的中線的定義以及直角三角形的性質解答即可.(1)證明:∵DE⊥AC于點E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=80+20=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)解:∵AD是△ABC的中線,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵點F是邊AB的中點,∴DF=AB=5.∴DF的長為5.【考點】本題主要考查了直角三角形的性質與判定,垂直平分線的判定和的性質,熟記勾股定理與逆定理是解答本題的關鍵.2、【解析】【分析】利用勾股定理先求解再利用勾股定理的逆定理證明從而可得答案.【詳解】解:如圖,連接AC,,所以四邊形ABCD的面積為:【考點】本題考查的是勾股定理與勾股定理的逆定理的應用,掌握“勾股定理與勾股定理的逆定理”是解本題的關鍵.3、(1)會,理由見解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,從而判斷出海港C是否受臺風影響;(2)利用勾股定理得出ED以及EF的長,進而得出臺風影響該海港持續(xù)的時間.【詳解】解:(1)如圖所示,過點C作CD⊥AB于D點,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC為直角三角形,∴,∴,∴,∵以臺風中心為圓心周圍250km以內為受影響區(qū)域,∴海港C會受到臺風影響;(2)由(1)得CD=240km,如圖所示,當EC=FC=250km時,即臺風經過EF段時,正好影響到海港C,此時△ECF為等腰三角形,∵,∴EF=140km,∵臺風的速度為20km/h,∴140÷20=7h,∴臺風影響該海港持續(xù)的時間有7h.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關鍵是構造出直角三角形,再利用勾股定理解答.4、(1)見解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明即可.(2)利用勾股數(shù)的公式代入求值即可.(1)證明:,∴,,構成勾股數(shù).(2)根據最小數(shù)為奇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工廠保衛(wèi)培訓課件內容
- 2025~2026學年濟南市天橋區(qū)七年級第一學期地理期末考試試題以及答案
- 2025-2026學年河北省五個一名校聯(lián)盟高三(上)期末數(shù)學試卷(含答案)
- 鋼結構涂裝技術方法詳解
- 特異體質學生管理制度
- 2026山東事業(yè)單位統(tǒng)考威海市榮成市招聘初級綜合類崗位84人備考考試試題及答案解析
- 市場營銷管理制度
- 2026浙江杭州海康存儲科技有限公司招聘考試參考試題及答案解析
- 2026云南中鋁數(shù)為(成都)科技有限責任公司社會招聘8人參考考試題庫及答案解析
- 小區(qū)私人財產管理制度內容(3篇)
- 2026廣東廣州市海珠區(qū)住房和建設局招聘雇員7人筆試參考題庫及答案解析
- 云南師大附中2026屆高三1月高考適應性月考卷英語(六)含答案
- 海南2025年中國熱帶農業(yè)科學院橡膠研究所第一批招聘16人(第1號)筆試歷年參考題庫附帶答案詳解
- 【讀后續(xù)寫】2021年11月稽陽聯(lián)考讀后續(xù)寫講評:Saving the Daisies 名師課件-陳星可
- 農貿市場突發(fā)事件應急預案
- 項目論證制度
- 股東合作協(xié)議模板
- Y -S-T 732-2023 一般工業(yè)用鋁及鋁合金擠壓型材截面圖冊 (正式版)
- GB/T 43829-2024農村糞污集中處理設施建設與管理規(guī)范
- 萬科物業(yè)服務指南房屋和設施維修管理
- 高一英語完型填空10篇實戰(zhàn)訓練及答案
評論
0/150
提交評論