版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
蚌埠市八年級數(shù)學(xué)試卷易錯易錯壓軸選擇題精選:勾股定理選擇題訓(xùn)練經(jīng)典題目(含答案)(2)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.如圖,正方體的棱長為4cm,A是正方體的一個頂點,B是側(cè)面正方形對角線的交點.一只螞蟻在正方體的表面上爬行,從點A爬到點B的最短路徑是()A.9 B. C. D.122.如圖,正方形ABCD的邊長為8,M在DC上,且DM=2,N是AC上的一動點,則DN+MN的最小值是()A.8 B.9 C.10 D.123.已知△ABC是腰長為1的等腰直角三角形,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推,第n個等腰直角三角形的面積是()A.2n﹣2 B.2n﹣1 C.2n D.2n+14.如圖,已知圓柱的底面直徑,高,小蟲在圓柱側(cè)面爬行,從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為()A.18 B.48 C.120 D.725.如圖所示,用四個全等的直角三角形和一個小正方形拼成一個大正方形已知大正方形的面積為49,小正方形的面積為4.用,表示直角三角形的兩直角邊(),請仔細(xì)觀察圖案.下列關(guān)系式中不正確的是()A. B.C. D.6.如圖,在長方形紙片中,,.把長方形紙片沿直線折疊,點落在點處,交于點,則的長為()A. B. C. D.7.已知,如圖,,點分別是的角平分線,邊上的兩個動點,,,則的最小值是()A.3 B. C.4 D.8.“勾股圖”有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了以“勾股圖”為背景的郵票(如圖1),歐幾里得在《幾何原本》中曾對該圖做了深入研究.如圖2,在中,,分別以的三條邊為邊向外作正方形,連結(jié),,,分別與,相交于點,.若,則的值為()A. B. C. D.9.如圖,在RtΔABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分線,若點P,Q分別是AD和AC上的動點,則PC+PQ的最小值是()A. B. C.12 D.1510.如圖,點的坐標(biāo)是,若點在軸上,且是等腰三角形,則點的坐標(biāo)不可能是()A.(2,0) B.(4,0)C.(-,0) D.(3,0)11.如圖,是等邊三角形,點D.E分別為邊BC.AC上的點,且,點F是BE和AD的交點,,垂足為點G,已知,,則為()A.4 B.5 C.6 D.712.如圖,在中,、分別是、的中點.已知,,,則的長為()A. B. C. D.13.在平面直角坐標(biāo)系內(nèi)的機(jī)器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行動結(jié)果為:在原地順時針旋轉(zhuǎn)A后,再向正前方沿直線行走α.若機(jī)器人的位置在原點,正前方為y軸的負(fù)半軸,則它完成一次指令[4,30°]后位置的坐標(biāo)為()A.(-2,2) B.(-2,-2) C.(-2,-2) D.(-2,2)14.如圖,“趙爽弦圖”是由四個全等的直角三角形和一個小正方形構(gòu)成的大正方形,若直角三角形的兩直角邊長分別為和,則小正方形的面積為()A.4 B.3 C.2 D.115.甲、乙兩艘輪船同時從港口出發(fā),甲以16海里/時的速度向北偏東的方向航行,它們出發(fā)1.5小時后,兩船相距30海里,若乙以12海里/時的速度航行,則它的航行方向為()A.北偏西 B.南偏西75°C.南偏東或北偏西 D.南偏西或北偏東16.下列四組數(shù)中不能構(gòu)成直角三角形的一組是()A.1,2, B.3,5,4 C.5,12,13 D.3,2,17.若△ABC中,AB=AC=,BC=4,則△ABC的面積為()A.4 B.8 C.16 D.18.在中,,,,則()A. B. C. D.19.如圖是我國數(shù)學(xué)家趙爽的股弦圖,它由四個全等的直角三角形和小正方形拼成的一個大正方形.已知大正方形的面積是l3,小正方形的面積是1,直角三角形的較短直角邊長為a,較長直角邊長為b,那么值為()A.25 B.9 C.13 D.16920.如圖,△ABC中,AB=10,BC=12,AC=,則△ABC的面積是().A.36 B. C.60 D.21.如圖,在數(shù)軸上點所表示的數(shù)為,則的值為()A. B. C. D.22.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點A恰好落在BC上的點D處,若CE=1,AB=4,則下列結(jié)論一定正確的個數(shù)是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE與△BDF的周長相等;A.1個 B.2個 C.3個 D.4個23.如圖,在中,,,邊上的中線,請試著判定的形狀是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.以上都不對24.有一個面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個小正方形,其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,變成了上圖,如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2020次后形成的圖形中所有的正方形的面積和是()A.1 B.2021 C.2020 D.201925.如圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對角線BD翻折,點C落在點處,B交AD于點E,則線段DE的長為()A.3 B. C.5 D.26.在下列以線段a、b、c的長為邊,能構(gòu)成直角三角形的是()A.a(chǎn)=3,b=4,c=6 B.a(chǎn)=5,b=6,c=7 C.a(chǎn)=6,b=8,c=9 D.a(chǎn)=7,b=24,c=2527.《九章算術(shù)》是我國古代第一部數(shù)學(xué)專著,它的出現(xiàn)標(biāo)志中國古代數(shù)學(xué)形成了完整的體系.“折竹抵地”問題源自《九章算術(shù)》中:“今有竹高一丈,末折抵地,去本四尺,問折者高幾何?”意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn)(如圖),則折斷后的竹子高度為多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.428.我國古代數(shù)學(xué)家趙爽“的勾股圓方圖”是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么的值為().A.49 B.25 C.13 D.129.已知三組數(shù)據(jù):①2,3,4;②3,4,5;③1,2,,分別以每組數(shù)據(jù)中的三個數(shù)為三角形的三邊長,能構(gòu)成直角三角形的是()A.② B.①② C.①③ D.②③30.在直角三角形中,,兩直角邊長及斜邊上的高分別為,則下列關(guān)系式成立的是()A. B. C. D.【參考答案】***試卷處理標(biāo)記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.B解析:B【分析】將正方體的左側(cè)面與前面展開,構(gòu)成一個長方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點睛】此題求最短路徑,我們將平面展開,組成一個直角三角形,利用勾股定理求出斜邊就可以了.2.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對稱圖形,點B與點D是關(guān)于直線AC為對稱軸的對稱點,∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點P,∵點N為AC上的動點,由三角形兩邊和大于第三邊,知當(dāng)點N運動到點P時,BN+MN=BP+PM=BM,BN+MN的最小值為BM的長度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故選:C.【點睛】此題考查正方形的性質(zhì)和軸對稱及勾股定理等知識的綜合應(yīng)用,解題的難點在于確定滿足條件的點N的位置:利用軸對稱的方法.然后熟練運用勾股定理.3.A解析:A【分析】連續(xù)使用勾股定理求直角邊和斜邊,然后再求面積,觀察發(fā)現(xiàn)規(guī)律,即可正確作答.【詳解】解:∵△ABC是邊長為1的等腰直角三角形,∴∴第n個等腰直角三角形的面積是,故答案為A.【點睛】本題的難點是運用勾股定理求直角三角形的直角邊,同時觀察、發(fā)現(xiàn)也是解答本題的關(guān)鍵.4.D解析:D【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點,的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中,,,∴,∴從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為.故選D.【點睛】本題考查了平面展開-最短路徑問題,解題的關(guān)鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.5.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對公式進(jìn)行合適的變形即可判斷各個選項是否爭取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長是2它等于三角形較長的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯誤.故選D.【點睛】本題考查勾股定理.在A、B、C選項的等式中需理解等式的各個部分表示的幾何意義,對于D選項是由A、C選項聯(lián)立得出的.6.A解析:A【分析】由已知條件可證△CFE≌△AFD,得到DF=EF,利用折疊知AE=AB=8cm,設(shè)AF=xcm,則DF=(8-x)cm,在Rt△AFD中,利用勾股定理即可求得x的值.【詳解】∵四邊形ABCD是長方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF設(shè)AF=xcm,則DF=(8-x)cm在Rt△AFD中,AF2=DF2+AD2,AD=6cm,故選擇A.【點睛】此題是翻折問題,利用勾股定理求線段的長度.7.D解析:D【分析】先根據(jù)等腰三角形的性質(zhì)得出是線段垂直平分線,再根據(jù)垂直平分線的性質(zhì)、兩點之間線段最短得出最小值為,最后根據(jù)垂線段最短、直角三角形的性質(zhì)得出BE的最小值即可得.【詳解】如圖,作,交AC于點E,∵AD平分∠BAC,∴∠BAD=∠CAD,是線段垂直平分線(等腰三角形的三線合一)由兩點之間線段最短得:當(dāng)點共線時,最小,最小值為點都是動點隨點的運動而變化由垂線段最短得:當(dāng)時,取得最小值在中,即的最小值為故選:D.【點睛】本題考查了等腰三角形的性質(zhì)、垂直平分線的性質(zhì)、兩點之間線段最短等知識點,利用兩點之間線段最短和垂線段最短確認(rèn)的最小值是解題關(guān)鍵.8.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,,,然后設(shè),繼而可分別求出,,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中,,∴△EAB≌△CAM(SAS),∴,∴,∴,,設(shè),則,,,,∴;∵在Rt△ACB和Rt△DCG中,,Rt△ACB≌Rt△DCG(HL),∴;∴.故選D.【點睛】本題主要考查了勾股定理,三角形全等的判定定理和性質(zhì)定理等知識.9.B解析:B【分析】過點D作DE⊥AB于點E,過點E作EQ⊥AC于點Q,EQ交AD于點P,連接CP,此時PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長度,再根據(jù)EQ⊥AC、∠ACB=90°即可得出EQ∥BC,進(jìn)而可得出,代入數(shù)據(jù)即可得出EQ的長度,此題得解.【詳解】解:如圖所示,過點D作DE⊥AB于點E,過點E作EQ⊥AC于點Q,EQ交AD于點P,連接CP,此時PC+PQ=EQ是最小值,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,∴,∵AD是∠BAC的平分線,∴∠CAD=∠EAD,在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AE=AC=9.∵EQ⊥AC,∠ACB=90°,∴EQ∥BC,,∴,.故選B.【點睛】本題考查了勾股定理、軸對稱中的最短路線問題以及平行線的性質(zhì),找出點C的對稱點E,及通過點E找到點P、Q的位置是解題的關(guān)鍵.10.D解析:D【詳解】解:(1)當(dāng)點P在x軸正半軸上,①以O(shè)A為腰時,∵A的坐標(biāo)是(2,2),∴∠AOP=45°,OA=,∴P的坐標(biāo)是(4,0)或(,0);②以O(shè)A為底邊時,∵點A的坐標(biāo)是(2,2),∴當(dāng)點P的坐標(biāo)為:(2,0)時,OP=AP;(2)當(dāng)點P在x軸負(fù)半軸上,③以O(shè)A為腰時,∵A的坐標(biāo)是(2,2),∴OA=,∴OA=AP=∴P的坐標(biāo)是(-,0).故選D.11.C解析:C【分析】結(jié)合等邊三角形得性質(zhì)易證△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE=15°,進(jìn)而兩次利用勾股定理可求解.【詳解】∵△ABC為等邊三角形∴∠BAE=∠C=60°,AB=AC,CD=AE∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAF=∠BAC=60°,∵BG⊥AD,∴∠BGF=90°,∴∠FBG=30°,∵FG=1,∴BF=2FG=2,∵∠BEC=75°,∠BAE=60°,∴∠ABE=∠BEC﹣∠BAE=15°,∴∠ABG=45°,∵BG⊥AD,∴∠AGB=90°,∴AG=BG==,AB2=AG2+BG2=()2+()2=6.故選C.【點睛】本題考查全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),勾股定理,證明△ABG為等腰直角三角形是解題關(guān)鍵.12.C解析:C【分析】設(shè)EC=x,DC=y,則直角△BCE中,x2+4y2=BE2=16,在直角△ADC中,4x2+y2=AD2=49,由方程組可求得x2+y2,在直角△ABC中,【詳解】解:設(shè)EC=x,DC=y,∠ACB=90°,∵、分別是、的中點,∴AC=2EC=2x,BC=2DC=2y,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=16在直角△ADC中,AC2+CD2=4x2+y2=AD2=49,∴,即,在直角△ABC中,.故選:C.【點睛】本題考查了勾股定理的靈活運用,考查了中點的定義,本題中根據(jù)直角△BCE和直角△ADC求得的值是解題的關(guān)鍵.13.B解析:B【解析】根據(jù)題意,如圖,∠AOB=30°,OA=4,則AB=2,OB=2,所以A(-2,-2),故選B.14.A解析:A【分析】根據(jù)直角三角形的兩直角邊長分別為和,可計算出正方形的邊長,從而得出正方形的面積.【詳解】解:3和5為兩條直角邊長時,小正方形的邊長=5-3=2,∴小正方形的面積22=4;綜上所述:小正方形的面積為4;故答案選A.【點睛】本題考查了勾股定理及其應(yīng)用,正確表示出直角三角形的面積是解題的關(guān)鍵.15.C解析:C【分析】先求出出發(fā)1.5小時后,甲乙兩船航行的路程,進(jìn)而可根據(jù)勾股定理的逆定理得出乙船的航行方向與甲船的航行方向垂直,進(jìn)一步即可得出答案.【詳解】解:出發(fā)1.5小時后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵,∴乙船的航行方向與甲船的航行方向垂直,∵甲船的航行方向是北偏東75°,∴乙船的航行方向是南偏東15°或北偏西15°.故選:C.【點睛】本題考查了勾股定理的逆定理和方位角,屬于??碱}型,正確理解題意、熟練掌握勾股定理的逆定理是解題的關(guān)鍵.16.A解析:A【解析】A.
12+22≠()2,不能構(gòu)成直角三角形,故此選項符合題意;B.
32+42=52,能構(gòu)成直角三角形,故此選項不符合題意;C.
52+122=132,能構(gòu)成直角三角形,故此選項不符合題意;D.
32+22=()2,能構(gòu)成直角三角形,故此選項不符合題意;故選A.17.B解析:B【分析】作AD⊥BC,則D為BC的中點,即BD=DC=2,根據(jù)勾股定理可以求得AD,則根據(jù)S=×BC×AD可以求得△ABC的面積.【詳解】解:作AD⊥BC,則D為BC的中點,則BD=DC=2,∵AB=,且AD==4,∴△ABC的面積為S=×BC×AD=×4×4=8,故選:B.【點睛】本題考查了勾股定理的運用,三角形面積的計算,本題中正確的運用勾股定理求AD是解題的關(guān)鍵.18.D解析:D【分析】根據(jù)直角三角形的性質(zhì)求出BC,根據(jù)勾股定理計算,得到答案.【詳解】解:∵∠C=90°,∠A=30°,∴BC=AB=6,由勾股定理得,AC=,故選:D.【點睛】本題考查的是直角三角形的性質(zhì)、勾股定理,掌握在直角三角形中,30°角所對的直角邊等于斜邊的一半是解題的關(guān)鍵.19.A解析:A【分析】根據(jù)勾股定理可以求得等于大正方形的面積,然后求四個直角三角形的面積,即可得到的值,然后根據(jù)即可求解.【詳解】根據(jù)勾股定理可得,四個直角三角形的面積是:,即,則.故選:A.【點睛】本題考查了勾股定理以及完全平方式,正確根據(jù)圖形的關(guān)系求得和的值是關(guān)鍵.20.A解析:A【分析】作于點D,設(shè),得,,結(jié)合題意,經(jīng)解方程計算得BD,再通過勾股定理計算得AD,即可完成求解.【詳解】如圖,作于點D設(shè),則∴,∴∵AB=10,AC=∴∴∴∴△ABC的面積故選:A.【點睛】本題考察了直角三角形、勾股定理、一元一次方程的知識,解題的關(guān)鍵是熟練掌握勾股定理的性質(zhì),從而完成求解.21.A解析:A【分析】首先根據(jù)勾股定理得出圓弧的半徑,然后得出點A的坐標(biāo).【詳解】解:∴由圖可知:點A所表示的數(shù)為:故選:A【點睛】本題主要考查的就是數(shù)軸上點所表示的數(shù),屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是求出斜邊的長度.在數(shù)軸上兩點之間的距離是指兩點所表示的數(shù)的差的絕對值.22.D解析:D【分析】利用等腰直角三角形的相關(guān)性質(zhì)運用勾股定理以及對應(yīng)角度的關(guān)系來推導(dǎo)對應(yīng)選項的結(jié)論即可.【詳解】解:由AB=4可得AC=BC=4,則AE=3=DE,由勾股定理可得CD=2,①正確;BD=4-2,②正確;由∠A=∠EDF=45°,則2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正確;△DCE的周長=CD+CE+DE=2+4,△BDF的周長=BD+BF+DF=BD+AB=4+4-2=4+2,④正確;故正確的選項有4個,故選:D.【點睛】本題主要考查等腰直角三角形的相關(guān)性質(zhì)以及勾股定理的運用,本題涉及的等腰直角三角形、翻折、勾股定理以及邊角關(guān)系,需要熟練地掌握對應(yīng)性質(zhì)以及靈活的運用.23.C解析:C【分析】利用勾股定理的逆定理可以推導(dǎo)出是直角三角形.再利用勾股定理求出AC,可得出AB=AC,即可判斷.【詳解】解:由已知可得CD=BD=5,即,是直角三角形,,故是等腰三角形.故選C【點睛】本題考查了勾股定理和它的逆定理,熟練掌握定理是解題關(guān)鍵.24.B解析:B【分析】根據(jù)勾股定理求出“生長”了1次后形成的圖形中所有的正方形的面積和,結(jié)合圖形總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.【詳解】解:由題意得,正方形A的面積為1,由勾股定理得,正方形B的面積+正方形C的面積=1,∴“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得,“生長”了2次后形成的圖形中所有的正方形的面積和為3,∴“生長”了3次后形成的圖形中所有的正方形的面積和為4,……∴“生長”了2020次后形成的圖形中所有的正方形的面積和為2021,故選:B.【點睛】本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.25.B解析:B【分析】首先根據(jù)題意得到BE=DE,然后根據(jù)勾股定理得到關(guān)于線段AB、AE、BE的方程,解方程即可解決問題.【詳解】解:設(shè)ED=x,則AE=6-x,∵四邊形ABCD為矩形,∴AD∥BC,∴∠EDB=∠DBC;由題意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=,∴ED=.故選:B.【點睛】本題主要考查了幾何變換中的翻折變換及其應(yīng)用問題;解題的關(guān)鍵是根據(jù)翻折變換的性質(zhì),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年家庭旅游計劃合同
- 2025年區(qū)塊鏈存證補充合同協(xié)議
- 餐飲管理師面試題及成本控制方案含答案
- 北京城建辦公室主任競聘考試題庫含答案
- 綠地集團(tuán)財務(wù)部主管資產(chǎn)減值測試方法與案例分析含答案
- 心理咨詢師三級考試模擬題及答案解析
- 電力市場調(diào)度員招聘面試題庫含答案
- 全棧工程師面試題及前后端開發(fā)流程含答案
- 游戲策劃師面試題及游戲機(jī)制設(shè)計參考含答案
- 京東金融風(fēng)控面試要點及答案
- 第五版FMEA控制程序文件編制
- 藥物致癌性試驗必要性指導(dǎo)原則
- 軟骨肉瘤護(hù)理查房
- 高級生物化學(xué)知識要點詳解
- 肌電圖在周圍神經(jīng)病中的應(yīng)用
- 2025春季學(xué)期國開電大專科《理工英語1》一平臺機(jī)考真題及答案(第五套)
- GB/T 45683-2025產(chǎn)品幾何技術(shù)規(guī)范(GPS)幾何公差一般幾何規(guī)范和一般尺寸規(guī)范
- CJ/T 107-2013城市公共汽、電車候車亭
- 可靠性測試標(biāo)準(zhǔn)試題及答案
- 入股境外合同協(xié)議書
- 一般將來時復(fù)習(xí)教案
評論
0/150
提交評論