版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在矩形ABCD中,點E在CD邊上,連接AE,將沿AE翻折,使點D落在BC邊的點F處,連接AF,在AF上取點O,以O為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點G,H,連接FG,GH.則下列結論錯誤的是()A. B.四邊形EFGH是菱形C. D.2、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.3、如圖圖案中,不是中心對稱圖形的是()A. B. C. D.4、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個5、如圖,在中,,,將繞點A順時針旋轉60°得到,此時點B的對應點D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.46、下列四個圖案中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.7、下表記錄了一名球員在罰球線上投籃的結果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6208、如圖是一個含有3個正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個圓形的金屬框上,使A,G,H三點剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在⊙O中,∠BOC=80°,則∠A=___________°.2、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點A按逆時針方向旋轉90°后得到△AB′C′.則圖中陰影部分的面積為_____.3、如圖,是由繞點O順時針旋轉30°后得到的圖形,若點D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.4、如圖,在⊙O中,A,B,C是⊙O上三點,如果∠AOB=70o,那么∠C的度數(shù)為_______.5、點(2,-3)關于原點的對稱點的坐標為_____.6、如圖,AB是半圓O的弦,DE是直徑,過點B的切線BC與⊙O相切于點B,與DE的延長線交于點C,連接BD,若四邊形OABC為平行四邊形,則∠BDC的度數(shù)為______.7、在同一平面上,外有一點P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.三、解答題(7小題,每小題0分,共計0分)1、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關系并說明理由;(2)若,求弧的長.2、在一個不透明的盒子中裝有四個只有顏色不同的小球,其中兩個紅球,一個黃球,一個藍球.(1)攪勻后從中任意摸出1個球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,用列表法或樹形圖的方法,求兩次都是紅球的概率.3、如圖,已知線段,點A在線段上,且,點B為線段上的一個動點.以A為中心順時針旋轉點M,以B為中心逆時針旋轉點N,旋轉角分別為和.若旋轉后M、N兩點重合成一點C(即構成),設.(1)的周長為_______;(2)若,求x的值.4、在同樣的條件下對某種小麥種子進行發(fā)芽試驗,統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.實驗種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質量為50g.那么播種3公頃該種小麥,估計約需麥種多少千克(精確到1kg)?5、隨著課后服務的全面展開,某校組織了豐富多彩的社團活動.炯炯和露露分別打算從以下四個社團:A.快樂足球,B.數(shù)學歷史,C.文學欣賞,D.棋藝鑒賞中,選擇一個社團參加.(1)炯炯選擇數(shù)學歷史的概率為______.(2)用畫樹狀圖或列表的方法求炯炯和露露選擇同一個社團的概率.6、在平面直角坐標系中,的三個頂點坐標分別為.(每個方格的邊長均為1個單位長度)(1)畫出關于原點對稱的圖形,并寫出點的坐標;(2)畫出繞點O逆時針旋轉后的圖形,并寫出點的坐標;(3)寫出經(jīng)過怎樣的旋轉可直接得到.(請將20題(1)(2)小問的圖都作在所給圖中)7、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點B按順時針方向旋轉.(1)當C轉到AB邊上點C′位置時,A轉到A′,(如圖1所示)直線CC′和AA′相交于點D,試判斷線段AD和線段A′D之間的數(shù)量關系,并證明你的結論.(2)將Rt△ABC繼續(xù)旋轉到圖2的位置時,(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;(3)將Rt△ABC旅轉至A、C′、A′三點在一條直線上時,請直接寫出此時旋轉角α的度數(shù).-參考答案-一、單選題1、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長定理得到AG=AH,∠GAF=∠HAF,進而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對A作出判斷;接下來延長EF與AB交于點N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結合HE=EF可對B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結合AD=DE對C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點G、H分別是切點,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯誤,符合題意.故選C.【點睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質,等邊三角形的判定和性質,翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關鍵.2、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,根據(jù)切線的性質得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了相似三角形的判定與性質.3、C【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心求解.【詳解】解:A、是中心對稱圖形,故A選項不合題意;B、是中心對稱圖形,故B選項不合題意;C、不是中心對稱圖形,故C選項符合題意;D、是中心對稱圖形,故D選項不合題意;故選:C.【點睛】本題考查了中心對稱圖形的知識,解題的關鍵是掌握中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180°后重合.4、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.5、B【分析】由題意以及旋轉的性質可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉的性質知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點睛】本題考查了等邊三角形的判定及性質,等邊三角形的三邊都相等,三個內(nèi)角都相等,并且每一個內(nèi)角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個內(nèi)角都相等的三角形是等邊三角形;有一個內(nèi)角是60度的等腰三角形是等邊三角形;兩個內(nèi)角為60度的三角形是等邊三角形.6、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、C【分析】根據(jù)頻率估計概率的方法并結合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時,頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點睛】本題主要考查了利用頻率估計概率,概率的得出是在大量實驗的基礎上得出的,不能單純的依靠幾次決定.8、A【分析】如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結合正方形的性質可得:再設利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結合正方形的性質可得:四邊形為正方形,則設而AB=2,CD=3,EF=5,結合正方形的性質可得:而又而解得:故選A【點睛】本題考查的是正方形的性質,三角形外接圓圓心的確定,圓的基本性質,勾股定理的應用,二次根式的化簡,確定過A,G,H三點的圓的圓心是解本題的關鍵.二、填空題1、40°度【分析】直接根據(jù)圓周角定理即可得出結論.【詳解】解:與是同弧所對的圓心角與圓周角,,.故答案為:.【點睛】本題考查的是圓周角定理,解題的關鍵是熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、【分析】利用勾股定理求出AC及AB的長,根據(jù)陰影面積等于求出答案.【詳解】解:由旋轉得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質、扇形面積計算公式及分析出陰影面積的構成特點是解題的關鍵.3、35°【分析】根據(jù)旋轉的性質可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【詳解】解:∵△COD是△AOB繞點O順時針旋轉30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點睛】本題考查了旋轉的性質,等腰三角形的性質,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質,熟記各性質并準確識圖是解題的關鍵.4、35°【分析】利用圓周角定理求出所求角度數(shù)即可.【詳解】解:與都對,且,,故答案為:.【點睛】本題考查了圓周角定理,解題的關鍵是熟練掌握圓周角定理.5、(-2,3)【分析】根據(jù)“關于原點對稱的點的坐標關系,橫坐標與縱坐標都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關于原點的對稱點的坐標是(-2,3).故答案為:
(-2,3).【點睛】本題主要考查點關于原點對稱,解決本題的關鍵是要熟練掌握關于原點對稱點的坐標的關系.6、【分析】先由切線的性質得到∠OBC=90°,再由平行四邊形的性質得到BO=BC,則∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【詳解】解:∵BC是圓O的切線,∴∠OBC=90°,∵四邊形ABCO是平行四邊形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案為:22.5°.【點睛】本題主要考查了平行四邊形的性質,切線的性質,等腰三角形的性質與判定,三角形外角的性質,熟知切線的性質是解題的關鍵.7、5或3【分析】分點P在圓內(nèi)或圓外進行討論.【詳解】解:①當點P在圓內(nèi)時,⊙O的直徑長為8+2=10(cm),半徑為5cm;②當點P在圓外時,⊙O的直徑長為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長為5cm或3cm.故答案為:5或3.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.三、解答題1、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質,垂徑定理,切線的判定,等邊三角形的判定和性質,熟練掌握相關知識點是解題的關鍵.2、(1);(2)兩次都是紅球的概率為【分析】(1)根據(jù)列舉法將所有可能列出,然后找出符合條件的可能,計算即可得;(2)四個球簡寫為“紅1,紅2,黃,藍”,利用列表法列出所有出現(xiàn)的可能,從中找到符合條件的結果數(shù),再根據(jù)概率公式計算可.(1)解:攪勻后從中任意摸出1個球,有四種可能:紅球、紅球、黃球、藍球,其中是紅球的可能有兩種,∴,其中是黃球的可能有一種,∴,故答案為:;;(2)四個球簡寫為“紅1,紅2,黃,藍”,列表法為:紅1紅2黃藍紅1(紅1,紅1)(紅1,紅2)(紅1,黃)(紅1,藍)紅2(紅2,紅1)(紅2,紅2)(紅2,黃)(紅2,藍)黃(黃,紅1)(黃,紅2)(黃,黃)(黃,藍)藍(藍,紅1)(藍,紅2)(藍,黃)(藍,藍)共有16種等可能的結果數(shù),其中兩次都是紅球的有4種結果,所以兩次都是紅球的概率為:.【點睛】題目主要考查利用列表法或樹狀圖法求概率,理解題意,熟練掌握列表法或樹狀圖法是解題關鍵.3、(1)4(2)【分析】(1)由旋轉知:AM=AC=1,BN=BC,將△ABC的周長轉化為MN;(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋轉知:AM=AC=1,BN=BC=3-x,∴△ABC的周長為:AC+AB+BC=MN=4;故答案為:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA)=180°-90°=90°,∴AC2+BC2=AB2,即12+(3-x)2=x2,解得.【點睛】本題主要考查了旋轉的性質,勾股定理等知識,證明∠ACB=90°是解題的關鍵.4、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計麥種的發(fā)芽率,大數(shù)次實驗,當頻率固定到一個穩(wěn)定值時,可根據(jù)頻率公式=頻數(shù)÷總數(shù)計算即可;(2)設約需麥種x千克,根據(jù)x千克轉化為克×1000,再轉為顆?!?0×1000,根據(jù)發(fā)芽率再×95%,根據(jù)芽轉苗再×80%,等于三公頃地需要的苗總數(shù),例方程x×1000÷50×1000×95%×80%=4000000×3,解方程即可(1)解:根據(jù)實驗數(shù)量變大,發(fā)芽數(shù)也在增大,2850÷3000×100%=95%,故該麥種的發(fā)芽概率約為95%;(2)解:設約需麥種x千克,x×1000÷50×1000×95%×80%=4000000×3,化簡得15200x=12000000,解得x=789,答:約需麥種790千克【點睛】本題考查用頻率估計發(fā)芽率,一元一次方程解應用題,掌握用頻率估計發(fā)芽率,一元一次方程解應用題的方法與步驟是解題關鍵.5、(1)(2)炯炯和露露選擇同一個社團的概率為【分析】(1)直接由概率公式求解即可;(2)畫樹狀圖,共有16種等可能的結果,其中炯炯和露露選同一個社團的有4種結果,再由概率公式求解即可.(1)∵共有A.快樂足球,B.數(shù)學歷史,C.文學欣賞,D.棋藝鑒賞四個社團,數(shù)學歷史是其中一個社團,∴炯炯選擇數(shù)學歷史的概率為,故答案為:;(2)畫樹狀圖如下:共有16種等可能的結
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年能源管理與企業(yè)節(jié)能策略
- 第2單元雙休必讀經(jīng)典書
- 2026年劇本殺運營公司質量問題整改管理制度
- 2026年劇本殺運營公司員工跨部門培訓管理制度
- 生成式人工智能在初中歷史課堂個性化教學中的應用探討教學研究課題報告
- 高中生對基因編輯技術科學證據(jù)的批判性思維訓練課題報告教學研究課題報告
- 護理部護理工作信息化建設匯報
- 健全消防安全制度
- 體育消費券制度
- 會員管理制度
- HG/T 3809-2023 工業(yè)溴化鈉 (正式版)
- 220kv輸變電工程項目實施方案
- 中國近代學前教育
- 海上風電機組基礎結構-第三章課件
- 家庭教育講師培訓方法研究
- 《英語面試指南》招聘求職必備手冊
- DB12-T 601-2022 城市軌道交通運營服務規(guī)范
- 白油化學品安全技術說明書
- 砼澆筑工程技術交底
- 重慶園林工程師園林理論
- CTM-DI(B)磁力儀使用說明書
評論
0/150
提交評論