人教版七年級下冊數(shù)學期末解答題測試試卷_第1頁
人教版七年級下冊數(shù)學期末解答題測試試卷_第2頁
人教版七年級下冊數(shù)學期末解答題測試試卷_第3頁
人教版七年級下冊數(shù)學期末解答題測試試卷_第4頁
人教版七年級下冊數(shù)學期末解答題測試試卷_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版七年級下冊數(shù)學期末解答題測試試卷一、解答題1.如圖,用兩個面積為的小正方形紙片剪拼成一個大的正方形.(1)大正方形的邊長是________;(2)請你探究是否能將此大正方形紙片沿著邊的方向裁出一個面積為的長方形紙片,使它的長寬之比為,若能,求出這個長方形紙片的長和寬,若不能,請說明理由.2.已知足球場的形狀是一個長方形,而國際標準球場的長度和寬度(單位:米)的取值范圍分別是,.若某球場的寬與長的比是1:1.5,面積為7350平方米,請判斷該球場是否符合國際標準球場的長寬標準,并說明理由.3.工人師傅準備從一塊面積為36平方分米的正方形工料上裁剪出一塊面積為24平方分米的長方形的工件.(1)求正方形工料的邊長;(2)若要求裁下的長方形的長寬的比為4:3,問這塊正方形工料是否滿足需要?(參考數(shù)據(jù):,)4.如圖,8塊相同的小長方形地磚拼成一個大長方形,(1)每塊小長方形地磚的長和寬分別是多少?(要求列方程組進行解答)(2)小明想用一塊面積為7平方米的正方形桌布,沿著邊的方向裁剪出一塊新的長方形桌布,用來蓋住這塊長方形木桌,你幫小明算一算,他能剪出符合要求的桌布嗎?5.數(shù)學活動課上,小新和小葵各自拿著不同的長方形紙片在做數(shù)學問題探究.(1)小新經(jīng)過測量和計算得到長方形紙片的長寬之比為3:2,面積為30,請求出該長方形紙片的長和寬;(2)小葵在長方形內(nèi)畫出邊長為a,b的兩個正方形(如圖所示),其中小正方形的一條邊在大正方形的一條邊上,她經(jīng)過測量和計算得到長方形紙片的周長為50,陰影部分兩個長方形的周長之和為30,由此她判斷大正方形的面積為100,間小葵的判斷正確嗎?請說明理由.二、解答題6.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).7.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關系.8.綜合與探究(問題情境)王老師組織同學們開展了探究三角之間數(shù)量關系的數(shù)學活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數(shù)量關系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當點在、(不與、重合)兩點之間運動時,設,.則,,之間有何數(shù)量關系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關系.9.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點逆時針旋轉n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數(shù);②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應的那兩條垂線;如果不存在,請說明理由.10.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關系為:;(不需要證明);如圖2中,、、的數(shù)量關系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).三、解答題11.(1)光線從空氣中射入水中會產(chǎn)生折射現(xiàn)象,同時光線從水中射入空氣中也會產(chǎn)生折射現(xiàn)象,如圖1,光線a從空氣中射入水中,再從水中射入空氣中,形成光線b,根據(jù)光學知識有,請判斷光線a與光線b是否平行,并說明理由.(2)光線照射到鏡面會產(chǎn)生反射現(xiàn)象,由光學知識,入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,如圖2有一口井,已知入射光線與水平線的夾角為,問如何放置平面鏡,可使反射光線b正好垂直照射到井底?(即求與水平線的夾角)(3)如圖3,直線上有兩點A、C,分別引兩條射線、.,,射線、分別繞A點,C點以1度/秒和3度/秒的速度同時順時針轉動,設時間為t,在射線轉動一周的時間內(nèi),是否存在某時刻,使得與平行?若存在,求出所有滿足條件的時間t.12.已知:直線∥,A為直線上的一個定點,過點A的直線交于點B,點C在線段BA的延長線上.D,E為直線上的兩個動點,點D在點E的左側,連接AD,AE,滿足∠AED=∠DAE.點M在上,且在點B的左側.(1)如圖1,若∠BAD=25°,∠AED=50°,直接寫出ABM的度數(shù);(2)射線AF為∠CAD的角平分線.①如圖2,當點D在點B右側時,用等式表示∠EAF與∠ABD之間的數(shù)量關系,并證明;②當點D與點B不重合,且∠ABM+∠EAF=150°時,直接寫出∠EAF的度數(shù).13.閱讀下面材料:小穎遇到這樣一個問題:已知:如圖甲,為之間一點,連接,求的度數(shù).她是這樣做的:過點作則有因為所以①所以所以即_;1.小穎求得的度數(shù)為__;2.上述思路中的①的理由是__;3.請你參考她的思考問題的方法,解決問題:已知:直線點在直線上,點在直線上,連接平分平分且所在的直線交于點.(1)如圖1,當點在點的左側時,若,則的度數(shù)為;(用含有的式子表示).(2)如圖2,當點在點的右側時,設,直接寫出的度數(shù)(用含有的式子表示).14.如圖,已知是直線間的一點,于點交于點.(1)求的度數(shù);(2)如圖2,射線從出發(fā),以每秒的速度繞P點按逆時針方向旋轉,當垂直時,立刻按原速返回至后停止運動:射線從出發(fā),以每秒的速度繞E點按逆時針方向旋轉至后停止運動,若射線,射線同時開始運動,設運動間為t秒.①當時,求的度數(shù);②當時,求t的值.15.如圖1,,E是、之間的一點.(1)判定,與之間的數(shù)量關系,并證明你的結論;(2)如圖2,若、的兩條平分線交于點F.直接寫出與之間的數(shù)量關系;(3)將圖2中的射線沿翻折交于點G得圖3,若的余角等于的補角,求的大?。摹⒔獯痤}16.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點O按逆時針方向旋轉,使∠BON=30°,如圖③,MN與CD相交于點E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點O按每秒30°的速度按逆時針方向旋轉一周,在旋轉的過程中,在第____________秒時,直線MN恰好與直線CD垂直.(直接寫出結果)17.如圖①,平分,⊥,∠B=450,∠C=730.(1)求的度數(shù);(2)如圖②,若把“⊥”變成“點F在DA的延長線上,”,其它條件不變,求的度數(shù);(3)如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.18.Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為:;(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關系為:.19.互動學習課堂上某小組同學對一個課題展開了探究.小亮:已知,如圖三角形,點是三角形內(nèi)一點,連接,,試探究與,,之間的關系.小明:可以用三角形內(nèi)角和定理去解決.小麗:用外角的相關結論也能解決.(1)請你在橫線上補全小明的探究過程:∵,(______)∴,(等式性質)∵,∴,∴.(______)(2)請你按照小麗的思路完成探究過程;(3)利用探究的結果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點,,,則______;③如圖③,,的十等分線相交于點、、、…、,若,,則的度數(shù)為______;④如圖④,,的角平分線交于點,則,與之間的數(shù)量關系是______;⑤如圖⑤,,的角平分線交于點,,,求的度數(shù).20.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質,可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關系?請說明理由;(2)在(1)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關系.【參考答案】一、解答題1.(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長即可;(2)先設未知數(shù)根據(jù)面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再解析:(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長即可;(2)先設未知數(shù)根據(jù)面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再判斷即可.【詳解】解:(1)兩個正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長是4cm;故答案為:4;(2)設長方形紙片的長為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長寬之比為且面積為的長方形紙片.【點睛】本題考查了算術平方根,能夠根據(jù)題意列出算式是解此題的關鍵.2.符合,理由見解析【分析】根據(jù)寬與長的比是1:1.5,面積為7350平方米,列方程求出長和寬,比較得出答案.【詳解】解:符合,理由如下:設寬為b米,則長為1.5b米,由題意得,1.5b×b解析:符合,理由見解析【分析】根據(jù)寬與長的比是1:1.5,面積為7350平方米,列方程求出長和寬,比較得出答案.【詳解】解:符合,理由如下:設寬為b米,則長為1.5b米,由題意得,1.5b×b=7350,∴b=70,或b=-70(舍去),即寬為70米,長為1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合國際標準球場的長寬標準.【點睛】本題考查算術平方根的意義,列出方程求出長和寬是得出正確答案的前提.3.(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(解析:(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(1)正方形工料的邊長為分米;(2)設長方形的長為4a分米,則寬為3a分米.則,解得:,長為,寬為∴滿足要求.【點睛】本題主要考查了算術平方根及實數(shù)大小比較,用了轉化思想,即把實際問題轉化成數(shù)學問題.4.(1)長是1.5m,寬是0.5m.;(2)不能.【解析】【分析】(1)設每塊小長方形地磚的長為xm,寬為ym,列方程組求解即可;(2)把正方形的邊長與大長方形的長比較即可.【詳解】解:解析:(1)長是1.5m,寬是0.5m.;(2)不能.【解析】【分析】(1)設每塊小長方形地磚的長為xm,寬為ym,列方程組求解即可;(2)把正方形的邊長與大長方形的長比較即可.【詳解】解:(1)設每塊小長方形地磚的長為xm,寬為ym,由題意得:

,

解得:,

∴長是1.5m,寬是0.5m.(2)∵正方形的面積為7平方米,∴正方形的邊長是米,∵<3,∴他不能剪出符合要求的桌布.【點睛】本題考查了二元一次方程組的應用,算術平方根的應用,找出等量關系列出方程組是解(1)的關鍵,求出正方形的邊長是解(2)的關鍵.5.(1)長為,寬為;(2)正確,理由見解析【分析】(1)設長為3x,寬為2x,根據(jù)長方形的面積為30列方程,解方程即可;(2)根據(jù)長方形紙片的周長為50,陰影部分兩個長方形的周長之和為30列方程解析:(1)長為,寬為;(2)正確,理由見解析【分析】(1)設長為3x,寬為2x,根據(jù)長方形的面積為30列方程,解方程即可;(2)根據(jù)長方形紙片的周長為50,陰影部分兩個長方形的周長之和為30列方程組,解方程組求出a即可得到大正方形的面積.【詳解】解:(1)設長為3x,寬為2x,則:3x?2x=30,∴x=(負值舍去),∴3x=,2x=,答:這個長方形紙片的長為,寬為;(2)正確.理由如下:根據(jù)題意得:,解得:,∴大正方形的面積為102=100.【點睛】本題考查了算術平方根,二元一次方程組,解二元一次方程組的基本思路是消元,把二元方程轉化為一元方程是解題的關鍵.二、解答題6.(1);(2)①;②【分析】(1)由平行線的性質得到,由折疊的性質可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質得到,再由折疊的性質及平角的定義解析:(1);(2)①;②【分析】(1)由平行線的性質得到,由折疊的性質可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質得到,再由折疊的性質及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點睛】此題考查了平行線的性質,屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯角相等”及折疊的性質是解題的關鍵.7.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質,熟練掌握角平分線和平行線的有關性質是解題的關鍵.8.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論解析:(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論:當點在延長線時;當在之間時;與①同理,利用平行線的性質,即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質,解題的關鍵是熟練掌握兩直線平行同旁內(nèi)角互補,兩直線平行內(nèi)錯角相等,從而得到角的關系.9.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內(nèi)角互補求出∠BCG,然后根據(jù)周角等于360°計算即可得到∠2;②結合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質,直角三角形的性質,讀懂題目信息并準確識圖是解題的關鍵.10.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質可求解;(2)根據(jù)(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質及角平分線的定義,作輔助線是解題的關鍵.三、解答題11.(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補角相等求出∠3與∠4的補角相等,再根據(jù)內(nèi)錯角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反解析:(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據(jù)等角的補角相等求出∠3與∠4的補角相等,再根據(jù)內(nèi)錯角相等,兩直線平行即可判定a∥b;(2)根據(jù)入射光線與鏡面的夾角與反射光線與鏡面的夾角相等可得∠1=∠2,然后根據(jù)平角等于180°求出∠1的度數(shù),再加上40°即可得解;(3)分①AB與CD在EF的兩側,分別表示出∠ACD與∠BAC,然后根據(jù)兩直線平行,內(nèi)錯角相等列式計算即可得解;②CD旋轉到與AB都在EF的右側,分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計算即可得解;③CD旋轉到與AB都在EF的左側,分別表示出∠DCF與∠BAC,然后根據(jù)兩直線平行,同位角相等列式計算即可得解.【詳解】解:(1)平行.理由如下:如圖1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(內(nèi)錯角相等,兩直線平行);(2)如圖2:∵入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,∴∠1=∠2,∵入射光線a與水平線OC的夾角為40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN與水平線的夾角為:25°+40°=65°,即MN與水平線的夾角為65°,可使反射光線b正好垂直照射到井底;(3)存在.如圖①,AB與CD在EF的兩側時,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠ACD=∠BAC,即115-3t=105-t,解得t=5;如圖②,CD旋轉到與AB都在EF的右側時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠DCF=∠BAC,即295-3t=105-t,解得t=95;如圖③,CD旋轉到與AB都在EF的左側時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,則∠DCF=∠BAC,即3t-295=t-105,解得t=95,此時t>105,∴此情況不存在.綜上所述,t為5秒或95秒時,CD與AB平行.【點睛】本題考查了平行線的判定與性質,光學原理,讀懂題意并熟練掌握平行線的判定方法與性質是解題的關鍵,(3)要注意分情況討論.12.(1);(2)①,見解析;②或【分析】(1)由平行線的性質可得到:,,再利用角的等量代換換算即可;(2)①設,,利用角平分線的定義和角的等量代換表示出對比即可;②分類討論點在的左右兩側的情況,解析:(1);(2)①,見解析;②或【分析】(1)由平行線的性質可得到:,,再利用角的等量代換換算即可;(2)①設,,利用角平分線的定義和角的等量代換表示出對比即可;②分類討論點在的左右兩側的情況,運用角的等量代換換算即可.【詳解】.解:(1)設在上有一點N在點A的右側,如圖所示:∵∴,∴∴(2)①.證明:設,.∴.∵為的角平分線,∴.∵,∴.∴.∴.②當點在點右側時,如圖:由①得:又∵∴∵∴當點在點左側,在右側時,如圖:∵為的角平分線∴∵∴,∵∴∴∵∴又∵∴∴當點和在點左側時,設在上有一點在點的右側如圖:此時仍有,∴∴綜合所述:或【點睛】本題主要考查了平行線的性質,角平分線的定義,角的等量代換等,靈活運用平行線的性質和角平分線定義等量代換出角的關系是解題的關鍵.13.;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質及1的結論證明即可得到答案;(2)根據(jù)B解析:;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質及1的結論證明即可得到答案;(2)根據(jù)BE平分平分求出,過點E作EF∥AB,根據(jù)平行線的性質求出∠BEF=,,再利用周角求出答案.【詳解】1、過點作則有因為所以①所以所以即;故答案為:;2、過點作則有因為所以EF∥CD(平行于同一條直線的兩條直線平行),故答案為:平行于同一條直線的兩條直線平行;3、(1)∵BE平分平分∴,過點E作EF∥AB,由1可得∠BED=,∴∠BED=,故答案為:;(2)∵BE平分平分∴,過點E作EF∥AB,則∠ABE=∠BEF=,∵∴EF∥CD,∴,∴,∴.【點睛】此題考查平行線的性質:兩直線平行內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,平行線的推論,正確引出輔助線是解題的關鍵.14.(1);(2)①或;②秒或或秒【分析】(1)通過延長作輔助線,根據(jù)平行線的性質,得到,再根據(jù)外角的性質可計算得到結果;(2)①當時,分兩種情況,Ⅰ當在和之間,Ⅱ當在和之間,由,計算出的運動時間解析:(1);(2)①或;②秒或或秒【分析】(1)通過延長作輔助線,根據(jù)平行線的性質,得到,再根據(jù)外角的性質可計算得到結果;(2)①當時,分兩種情況,Ⅰ當在和之間,Ⅱ當在和之間,由,計算出的運動時間,根據(jù)運動時間可計算出,由已知可計算出的度數(shù);②根據(jù)題意可知,當時,分三種情況,Ⅰ射線由逆時針轉動,,根據(jù)題意可知,,再平行線的性質可得,再根據(jù)三角形外角和定理可列等量關系,求解即可得出結論;Ⅱ射線垂直時,再順時針向運動時,,根據(jù)題意可知,,,,可計算射線的轉動度數(shù),再根據(jù)轉動可列等量關系,即可求出答案;Ⅲ射線垂直時,再順時針向運動時,,根據(jù)題意可知,,,根據(jù)(1)中結論,,,可計算出與代數(shù)式,再根據(jù)平行線的性質,可列等量關系,求解可得出結論.【詳解】解:(1)延長與相交于點,如圖1,,,,;(2)①Ⅰ如圖2,,,,射線運動的時間(秒,射線旋轉的角度,又,;Ⅱ如圖3所示,,,,射線運動的時間(秒,射線旋轉的角度,又,;的度數(shù)為或;②Ⅰ當由運動如圖4時,與相交于點,根據(jù)題意可知,經(jīng)過秒,,,,,又,,解得(秒;Ⅱ當運動到,再由運動到如圖5時,與相交于點,根據(jù)題意可知,經(jīng)過秒,,,,,運動的度數(shù)可得,,解得;Ⅲ當由運動如圖6時,,根據(jù)題意可知,經(jīng)過秒,,,,,,,又,,,解得(秒),當?shù)闹禐槊牖蚧蛎霑r,.【點睛】本題主要考查平行線性質,合理添加輔助線和根據(jù)題意畫出相應的圖形時解決本題的關鍵.15.(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結論得∠AFD=∠BAF+∠CDF,根據(jù)角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結論得到∠AFD=∠AED;(3)由(1)的結論得∠AGD=∠BAF+∠CDG,利用折疊性質得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計算出∠BAE的度數(shù).【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結論得,、的兩條平分線交于點F,,,,,;(3)由(1)的結論得,而射線沿翻折交于點G,,,,,.【點睛】本題考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.四、解答題16.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角互補即可求出∠CEN的度數(shù).(3)畫出圖形,求出在MN⊥CD時的旋轉角,再除以30°即得結果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時,旋轉角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時,直線MN恰好與直線CD垂直.【點睛】本題以學生熟悉的三角板為載體,考查了三角形的內(nèi)角和、平行線的判定和性質、垂直的定義和旋轉的性質,前兩小題難度不大,難點是第(3)小題,解題的關鍵是畫出適合題意的幾何圖形,弄清求旋轉角的思路和方法,本題的第一種情況是將旋轉角∠DOM放在四邊形DOMF中,用四邊形內(nèi)角和求解,第二種情況是用周角減去∠DOM的度數(shù).17.(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE=14°;(2)∠DFE=14°;(3)∠DAE的大小不變,∠DAE=14°,證明詳見解析.【分析】(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.【詳解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)的大小不變.=14°理由:∵AD平分∠BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C=360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【點睛】本題考查了三角形內(nèi)角和定理和三角形外角的性質,熟練掌握性質是解題的關鍵.18.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補角的定義,得出∠1+∠2=∠C+∠α,進而得出即可;(2)利用(1)中所求的結論得出∠α、∠1、∠2之間的關系即可;(3)利用三角外角的性質,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補角的性質可得出∠α、∠1、∠2之間的關系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設DP與BE的交點為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設PE與AC的交點為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論