滬科版9年級(jí)下冊期末試題附參考答案詳解【奪分金卷】_第1頁
滬科版9年級(jí)下冊期末試題附參考答案詳解【奪分金卷】_第2頁
滬科版9年級(jí)下冊期末試題附參考答案詳解【奪分金卷】_第3頁
滬科版9年級(jí)下冊期末試題附參考答案詳解【奪分金卷】_第4頁
滬科版9年級(jí)下冊期末試題附參考答案詳解【奪分金卷】_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級(jí)下冊期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.2、如圖,ABCD是正方形,△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形3、如圖,,,,都是上的點(diǎn),,垂足為,若,則的度數(shù)為()A. B. C. D.4、如圖是由5個(gè)相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.5、如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),PA=4,則PB的長度為()A.3 B.4 C.5 D.66、如圖,將一個(gè)棱長為3的正方體表面涂上顏色,把它分割成棱長為1的小正方體,將它們?nèi)糠湃胍粋€(gè)不透明盒子中搖勻,隨機(jī)取出一個(gè)小正方體,有三個(gè)面被涂色的概率為()A. B. C. D.7、“2022年春節(jié)期間,中山市會(huì)下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機(jī)事件8、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點(diǎn)O,∠BOC=60°,分別在、線段AB和AC上選取點(diǎn)P、E、F,則PE+EF+FP的最小值為____________.2、在一個(gè)布袋中,裝有除顏色外其它完全相同的2個(gè)紅球和2個(gè)白球,如果從中隨機(jī)摸出兩個(gè)球,那么摸到的兩個(gè)紅球的概率是________.3、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點(diǎn),則的最小值是______.4、《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有這樣的一個(gè)問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.5、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.6、如圖AB為⊙O的直徑,點(diǎn)P為AB延長線上的點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過A、B兩點(diǎn)分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號(hào))①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.7、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.三、解答題(7小題,每小題0分,共計(jì)0分)1、在中,,,過點(diǎn)A作BC的垂線AD,垂足為D,E為線段DC上一動(dòng)點(diǎn)(不與點(diǎn)C重合),連接AE,以點(diǎn)A為中心,將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點(diǎn)G.(1)如圖,當(dāng)點(diǎn)E在線段CD上時(shí),①依題意補(bǔ)全圖形,并直接寫出BC與CF的位置關(guān)系;②求證:點(diǎn)G為BF的中點(diǎn).(2)直接寫出AE,BE,AG之間的數(shù)量關(guān)系.2、如圖,等腰直角三角形,,,延長至E,使得,以為直角邊作,,.(1)若以每秒1個(gè)單位的速度沿向右運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),直接寫出在運(yùn)動(dòng)過程中與重疊部分面積S與運(yùn)動(dòng)時(shí)間t(單位:秒)的函數(shù)關(guān)系式;(2)點(diǎn)M為線段的中點(diǎn),當(dāng)(1)中的頂點(diǎn)E運(yùn)動(dòng)到點(diǎn)C后,將繞著點(diǎn)C繼續(xù)順時(shí)針旋轉(zhuǎn)得到,點(diǎn)P是直線上一動(dòng)點(diǎn),連接,求的最小值.3、如圖,拋物線y=-+x+2與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B.(1)求A,B兩點(diǎn)的坐標(biāo);(2)如圖1,點(diǎn)C在y軸右側(cè)的拋物線上,且AC=BC,求點(diǎn)C的坐標(biāo);(3)如圖2,將△ABO繞平面內(nèi)點(diǎn)P順時(shí)針旋轉(zhuǎn)90°后,得到△DEF(點(diǎn)A,B,O的對應(yīng)點(diǎn)分別是點(diǎn)D,E,F(xiàn)),D,E兩點(diǎn)剛好在拋物線上.①求點(diǎn)F的坐標(biāo);②直接寫出點(diǎn)P的坐標(biāo).4、(1)解方程:(2)我國古代數(shù)學(xué)專著《九章算術(shù)》中記載:“今有宛田,下周三十步,徑十六步,問為田幾何?”注釋:宛田是指扇形形狀的田,下周是指弧長,徑是指扇形所在圓的直徑.求這口宛田的面積.5、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個(gè)問題:如圖1,在平面直角坐標(biāo)系xOy中,OA經(jīng)過坐標(biāo)原點(diǎn)O,并與兩坐標(biāo)軸分別交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為,點(diǎn)D在上,且,求OA的半徑和圓心A的坐標(biāo).元元的做法如下,請你幫忙補(bǔ)全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標(biāo)為(④)的半徑為⑤6、如圖,內(nèi)接于,BC是的直徑,D是AC延長線上一點(diǎn).(1)請用尺規(guī)完成基本作圖:作出的角平分線交于點(diǎn)P.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,過點(diǎn)P作,垂足為E.則PE與有怎樣的位置關(guān)系?請說明理由.7、對于平面直角坐標(biāo)系xOy中的圖形M和點(diǎn)P給出如下定義:Q為圖形M上任意一點(diǎn),若P,Q兩點(diǎn)間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點(diǎn)P為圖形M的“二分點(diǎn)”.已知點(diǎn)N(3,0),A(1,0),,.(1)①在點(diǎn)A,B,C中,線段ON的“二分點(diǎn)”是______;②點(diǎn)D(a,0),若點(diǎn)C為線段OD的“二分點(diǎn)”,求a的取值范圍;(2)以點(diǎn)O為圓心,r為半徑畫圓,若線段AN上存在的“二分點(diǎn)”,直接寫出r的取值范圍.-參考答案-一、單選題1、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.2、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.3、B【分析】連接OC.根據(jù)確定,,進(jìn)而計(jì)算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點(diǎn)睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應(yīng)用這些知識(shí)點(diǎn)是解題關(guān)鍵.4、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個(gè)正方形,第二層左側(cè)有1個(gè)正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識(shí),熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.5、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點(diǎn),∴,,∴在和中,,∴,∴.故選:B【點(diǎn)睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.6、B【分析】直接根據(jù)題意得出恰有三個(gè)面被涂色的有8個(gè),再利用概率公式求出答案.【詳解】解:由題意可得:小立方體一共有27個(gè),恰有三個(gè)面被涂色的為棱長為3的正方體頂點(diǎn)處的8個(gè)小正方體;故取得的小正方體恰有三個(gè)面被涂色.的概率為.故選:B.【點(diǎn)睛】此題主要考查了概率公式的應(yīng)用,正確得出三個(gè)面被涂色.小立方體的個(gè)數(shù)是解題關(guān)鍵.7、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會(huì)下雨”這一事件為隨機(jī)事件,故選:D.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.8、B【分析】根據(jù)“把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形”及“如果一個(gè)平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點(diǎn)睛】本題主要考查中心對稱圖形及軸對稱圖形的識(shí)別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關(guān)鍵.二、填空題1、12【分析】如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當(dāng)MN的值最小時(shí),△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當(dāng)PA的值最小時(shí),MN的值最小,取AB的中點(diǎn)J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當(dāng)點(diǎn)P在直線OA上時(shí),PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點(diǎn)睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.2、【分析】畫樹狀圖,共有12個(gè)等可能的結(jié)果,摸到的兩個(gè)球顏色紅色的結(jié)果有2個(gè),再由概率公式求解即可.【詳解】解:畫樹狀圖如圖:共有12個(gè)等可能的結(jié)果,摸到的兩個(gè)紅球的有2種結(jié)果,摸到的兩個(gè)紅球的概率是,故答案為:.【點(diǎn)睛】本題考查列表法或畫樹狀圖求概率,解題的關(guān)鍵是準(zhǔn)確畫出樹狀圖或列出表格.3、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當(dāng)時(shí),的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當(dāng)時(shí),的值最小,,,,,.則的最小值是,故答案為:.【點(diǎn)睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.4、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設(shè)直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點(diǎn)睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點(diǎn)在理解題意和利用內(nèi)切圓半徑求解面積;5、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點(diǎn)睛】本題考查了弧長的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.6、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯(cuò)誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.7、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點(diǎn)睛】本題考查了扇形的圓心角與面積.解題的關(guān)鍵在于運(yùn)用扇形的弧長與面積公式進(jìn)行求解.難點(diǎn)在于求出公式中的未知量.三、解答題1、(1)①BC⊥CF;證明見詳解;②見詳解;(2)2AE2=4AG2+BE2.證明見詳解.【分析】(1)①如圖所示,BC⊥CF.根據(jù)將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,得出AE=AF,∠EAF=90°,可證△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根據(jù)AD⊥BC,BC⊥CF.可得AD∥CF,可證△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延長BA交CF延長線于H,根據(jù)等腰三角形性質(zhì)可得AD平分∠BAC,可得∠BAD=∠CAD=,可證△BAG∽△BHF,得出HF=2AG,再證△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【詳解】解:(1)①如圖所示,BC⊥CF.∵將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴,∵,AD⊥BC,∴BD=DC=,∴,∴,∴,∴BG=GF;(2)2AE2=4AG2+BE2.延長BA交CF延長線于H,∵AD⊥BC,AB=AC,∴AD平分∠BAC,∴∠BAD=∠CAD=,∵BG=GF,AG∥HF,∴∠BAG=∠H=45°,∠AGB=∠HFB,∴△BAG∽△BHF,∴,∴HF=2AG,∵∠ACE=45°,∴∠ACE=∠H,∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH,在△AEC和△AFH中,,∴△AEC≌△AFH(AAS),∴EC=FH=2AG,在Rt△AEF中,根據(jù)勾股定理,在Rt△ECF中,即.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),勾股定理,掌握圖形旋轉(zhuǎn)性質(zhì),三角形完全判定與性質(zhì),等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),勾股定理是解題關(guān)鍵.2、(1)(2)【分析】(1)根據(jù)運(yùn)動(dòng)重合部分不同情況分四種情況討論,①當(dāng)時(shí),②當(dāng)時(shí),③當(dāng)時(shí),④當(dāng)時(shí),根據(jù)三角形的面積公式求函數(shù)解析式即可.(2)作關(guān)于的對稱點(diǎn),連接,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),交于點(diǎn),則的最小值即為的長,進(jìn)而解直角三角形,即可求得的長,即的最小值(1)等腰直角三角形,,,,在,,①當(dāng)時(shí),如圖,重疊部分面積為,設(shè)交于點(diǎn),過點(diǎn)作于點(diǎn),以每秒1個(gè)單位的速度沿向右運(yùn)動(dòng),設(shè),則在,,即解得②當(dāng)時(shí),如圖,重疊部分面積為四邊形的面積,設(shè)交于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),,③當(dāng)時(shí),此時(shí)重疊面積為④當(dāng)時(shí),如圖,設(shè)交于點(diǎn),此時(shí)重疊面積為四邊形的面積,,綜上所述,(2)如圖,作關(guān)于的對稱點(diǎn),連接,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)交于點(diǎn),交于點(diǎn),則在中,則的最小值即為的長在中,設(shè),,則中,為的中點(diǎn),則,即的最小值為【點(diǎn)睛】本題考查了動(dòng)點(diǎn)的函數(shù)問題,解直角三角形,(1)分類討論,(2)轉(zhuǎn)化線段是解題的關(guān)鍵.3、(1)A(-1,0),B(0,2);(2)點(diǎn)C的坐標(biāo)(,);(3)①求點(diǎn)F的坐標(biāo)(1,2);②點(diǎn)P的坐標(biāo)(,)【分析】(1)令x=0,求得y值,得點(diǎn)B的坐標(biāo);令y=0,求得x的值,取較小的一個(gè)即求A點(diǎn)的坐標(biāo);(2)設(shè)C的坐標(biāo)為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點(diǎn)P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點(diǎn),從而確定點(diǎn)P在拋物線的對稱軸上,點(diǎn)F在BE上,且BE∥x軸,點(diǎn)E(3,2),確定BE=3,根據(jù)旋轉(zhuǎn)性質(zhì),得EF=BO=2,從而確定點(diǎn)F的坐標(biāo);②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點(diǎn)P的坐標(biāo).【詳解】(1)令x=0,得y=2,∴點(diǎn)B的坐標(biāo)為B(0,2);令y=0,得-+x+2=0,解得∵點(diǎn)A在x軸的負(fù)半軸;∴A點(diǎn)的坐標(biāo)(-1,0);(2)設(shè)C的坐標(biāo)為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設(shè)t=-+x,∴,∴,∴,∴,整理,得,解得∵點(diǎn)C在y軸右側(cè)的拋物線上,∴,此時(shí)y=,∴點(diǎn)C的坐標(biāo)(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點(diǎn)P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點(diǎn),∴點(diǎn)P在拋物線的對稱軸上,點(diǎn)F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點(diǎn)E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點(diǎn)F的坐標(biāo)為(1,2);②如圖,設(shè)拋物線的對稱軸與BE交于點(diǎn)M,交x軸與點(diǎn)N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點(diǎn)P的坐標(biāo)為(,).【點(diǎn)睛】本題考查了拋物線與坐標(biāo)軸的交點(diǎn),旋轉(zhuǎn)的性質(zhì),兩點(diǎn)間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的對稱性,靈活理解旋轉(zhuǎn)的意義,熟練解一元二次方程是解題的關(guān)鍵.4、(1),;(2)平方步【分析】(1)利用配方法,即可求解;(2)利用扇形的面積公式,即可求解.【詳解】解:(1),,配方,得,∴,∴,;(2)解:∵扇形的田,弧長30步,其所在圓的直徑是16步,∴這塊田的面積(平方步).【點(diǎn)睛】本題主要考查了解一元二次方程,求扇形的面積,熟練掌握一元二次方程的解法,扇形的面積等于乘以弧長再乘以扇形的半徑是解題的關(guān)鍵.5、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據(jù)垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據(jù)是垂徑定理)∵,∴(依據(jù)是圓周角定理).∵,.∴BC是的直徑(依據(jù)是圓周角定理).∴,∵,∴A的坐標(biāo)為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,圓周角定理,(1,),2.【點(diǎn)睛】此題考查了圓的知識(shí),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論