版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
冀教版8年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、在平面直角坐標系中,點A(3,-4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、一多邊形的每一個內(nèi)角都等于它相鄰外角的4倍,則該多邊形的內(nèi)角和是()A.360° B.900° C.1440° D.1800°3、如圖,四邊形ABCD是平行四邊形,過點A作AM⊥BC于點M,交BD于點E,過點C作CN⊥AD于點N,交BD于點F,連接CE,當EA=EC,且點M為BC的中點時,AB:AE的值為()A.2 B. C. D.4、如圖,菱形的對角線、相交于點,,,為過點的一條直線,則圖中陰影部分的面積為()A.4 B.6 C.8 D.125、如圖,菱形ABCD的面積為24cm2,對角線BD長6cm,點O為BD的中點,過點A作AE⊥BC交CB的延長線于點E,連接OE,則線段OE的長度是()A.3cm B.4cm C.4.8cm D.5cm6、已知點P(2﹣m,m﹣5)在第三象限,則整數(shù)m的值是()A.4 B.3,4 C.4,5 D.2,3,47、我縣有55000名學生參加考試,為了了解考試情況,從中抽取1000名學生的成績進行統(tǒng)計分析,在這個問題中,有下列三種說法:①1000名考生是總體的一個樣本;②55000名考生是總體;③樣本容量是1000.其中正確的說法有()A.0種 B.1種 C.2種 D.3種第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、平面直角坐標系中,將點A(﹣2,1)向右平移4個單位長度,再向下平移3個單位長度得到點A′,則點A′的坐標為_____.2、如圖,在平行四邊形中,是對角線,,點是的中點,平分,于點,連接.已知,,則的長為_______.3、已知點,則點到軸的距離為______,到軸的距離為______.4、如果點P1(3,y1),P2(2,y2)在一次函數(shù)y=8x-1的圖像上,那么y1______y2.(填“>”、“<”或“=”)5、如圖,已知A、B、C三點的坐標分別是、、,過點C作直線軸,若點P為直線l上一個動點,且的面積為5,則點P的坐標是______.6、在平面直角坐標系中,若點到軸的距離是3,則的值是__.7、定義:在平面內(nèi),一個點到圖形的距離是這個點到這個圖上所有點的最短距離,在平面內(nèi)有一個正方形,邊長為6,中心為O,在正方形外有一點P,,當正方形繞著點O旋轉(zhuǎn)時,則點P到正方形的最短距離d的最大值為______.8、若一個正多邊形的內(nèi)角和與外角和的度數(shù)相等,則此正多邊形對稱軸條數(shù)為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,正方形ABCD中,E為BD上一點,AE的延長線交BC的延長線于點F,交CD于點H,G為FH的中點.(1)求證:AE=CE;(2)猜想線段AE,EG和GF之間的數(shù)量關系,并證明.2、某廠計劃生產(chǎn)A,B兩種產(chǎn)品若干件,已知兩種產(chǎn)品的成本價和銷售價如下表:A種產(chǎn)品B種產(chǎn)品成本價(元/件)400300銷售價(元/件)560450(1)第一次工廠用220000元資金生產(chǎn)了A,B兩種產(chǎn)品共600件,求兩種產(chǎn)品各生產(chǎn)多少件?(2)第二次工廠生產(chǎn)時,工廠規(guī)定A種產(chǎn)品生產(chǎn)數(shù)量不得超過B種產(chǎn)品生產(chǎn)數(shù)量的一半.工廠計劃生產(chǎn)兩種產(chǎn)品共3000件,應如何設計生產(chǎn)方案才能獲得最大利潤,最大利潤是多少?3、如圖是某種蠟燭在燃燒過程中高度與時間之間關系的圖象,由圖象解答下列問題:(1)求蠟燭在燃燒過程中高度與時間之間的函數(shù)表達式(2)經(jīng)過多少小時蠟燭燃燒完畢?4、如圖1,在平面直角坐標系中存在矩形ABCO,點A(﹣a,0)、點B(﹣a.b),且a、b滿足:b12.(1)求A、B點坐標;(2)作∠OAB的角平分線交y軸于D,AD的中點為E,連接BE,作EF⊥BE交x軸于F,求EF的長;(3)如圖2,將矩形ABCO向左推倒得到矩形A'B'C'O',使A與A'重合,B'落在x軸上.現(xiàn)在將矩形A'B'C'O'沿射線AD以1個單位/秒平移,設平移時間為t,用t表示平移過程中矩形ABCD與矩形A'B'C'O'重合部分的面積.5、經(jīng)開區(qū)某中學計劃舉行一次知識競賽,并對獲獎的同學給予獎勵.現(xiàn)要購買甲、乙兩種獎品,已知1件甲種獎品和2件乙種獎品共需40元,2件甲種獎品和3件乙種獎品共需70元.(1)求甲、乙兩種獎品的單價;(2)根據(jù)頒獎計劃,該中學需甲、乙兩種獎品共60件,且甲種獎品不少于乙種獎品的一半,應如何購買才能使總費用最少?并求出最少費用.6、已知:△ABC,AD為BC邊上的中線,點M為AD上一動點(不與點A重合),過點M作ME∥AB,過點C作CE∥AD,連接AE.(1)如圖1,當點M與點D重合時,求證:①△ABM≌△EMC;②四邊形ABME是平行四邊形(2)如圖2,當點M不與點D重合時,試判斷四邊形ABME還是平行四邊形嗎?如果是,請給出證明;如果不是,請說明理由;(3)如圖3,延長BM交AC于點N,若點M為AD的中點,求的值.7、尺規(guī)作圖并回答問題:(保留作圖痕跡)已知:如圖,四邊形ABCD是平行四邊形.求作:菱形AECF,使點E,F(xiàn)分別在BC,AD上.請回答:在你的作法中,判定四邊形AECF是菱形的依據(jù)是.-參考答案-一、單選題1、D【解析】【分析】根據(jù)直角坐標系中點的坐標的特點解答即可.【詳解】∵3>0,-4<0,∴點(3,-4)在第四象限,故選:D.【點睛】本題考查直角坐標系中點的坐標的符號特點,第一象限為(+,+),第二象限為(-,+),第三象限為(-,-),第四象限為(+,-).2、C【解析】【分析】設每一個外角都為x,則相鄰的內(nèi)角為4x,然后根據(jù)“鄰補角和為180°”列方程求得外角的大小,然后再根據(jù)多邊形外角和定理求得多邊形邊數(shù),最后運用多邊形內(nèi)角和公式求解即可.【詳解】解:設每一個外角都為x,則相鄰的內(nèi)角為4x,由題意得,4x+x=180°,解得:x=36°,多邊形的外角和為360°,360°÷36°=10,所以這個多邊形的邊數(shù)為10,則該多邊形的內(nèi)角和是:(10﹣8)×180=1440°.故選:C.【點睛】本題主要考查了多邊形內(nèi)角和相鄰外角的關系、多邊形的外角和、多邊形內(nèi)角和等知識點,掌握多邊形的外角和為360°是解答本題的關鍵.3、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)、垂直的定義、平行線的判定定理可以推知AE∥CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根據(jù)全等三角形的對應邊相等知AE=CF,所以對邊平行且相等的四邊形是平行四邊形;連接AC交BF于點O,根據(jù)EA=EC推知?ABCD是菱形,根據(jù)菱形的鄰邊相等知AB=BC;然后結(jié)合已知條件“M是BC的中點,AM⊥BC”證得△ADE≌△CBF(ASA),所以AE=CF,從而證得△ABC是正三角形;最后在Rt△BCF中,求得CF:BC=,利用等量代換知(AE=CF,AB=BC)AB:AE=.【詳解】解:連接AC,∵四邊形ABCD是平行四邊形,∴BC∥AD;∴∠ADE=∠CBD,∵AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∴AM∥CN,∴AE∥CF;∴四邊形AECF為平行四邊形,∵EA=EC,∴?AECF是菱形,∴AC⊥BD,∴平行四邊形ABCD是菱形,∴AB=BC,∵M是BC的中點,AM⊥BC,∴AB=AC,∴△ABC為等邊三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=,又∵AE=CF,AB=BC,∴AB:AE=.故選:B.【點睛】本題綜合考查了全等三角形的判定與性質(zhì)、菱形的判定與性質(zhì)以及等邊三角形的判定與性質(zhì)等知識點,證得?ABCD是菱形是解題的難點.4、B【解析】【分析】根據(jù)菱形的性質(zhì)可證出,可將陰影部分面積轉(zhuǎn)化為的面積,根據(jù)菱形的面積公式計算即可.【詳解】解:四邊形為菱形,,,,,,∴,∴,∴故選:.【點睛】此題考查了菱形的性質(zhì),菱形的面積公式,全等三角形的判定,將陰影部分的面積轉(zhuǎn)化為的面積為解題關鍵.5、B【解析】【分析】由菱形的性質(zhì)得出BD=6cm,由菱形的面積得出AC=8cm,再由直角三角形斜邊上的中線等于斜邊的一半即可得出結(jié)果.【詳解】解:∵四邊形ABCD是菱形,∴BD⊥AC,∵BD=6cm,S菱形ABCD═AC×BD=24cm2,∴AC=8cm,∵AE⊥BC,∴∠AEC=90°,∴OE=AC=4cm,故選:B.【點睛】本題主要考查了菱形的性質(zhì)、直角三角形斜邊上的中線性質(zhì);熟練掌握菱形的性質(zhì)是解題的關鍵.6、B【解析】【分析】根據(jù)第三象限點的坐標特點列不等式組求出解集,再結(jié)合整數(shù)的定義解答即可.【詳解】解:∵P(2﹣m,m﹣5)在第三象限∴2?m<0m?5∵m是整數(shù)∴m的值為3,4.故選B.【點睛】本題主要考查了平面直角坐標系內(nèi)點的坐標特點、解不等式組等知識點,掌握第三象限內(nèi)的點橫、縱坐標均小于零成為解答本題的關鍵.7、B【解析】【分析】總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目,根據(jù)定義逐一分析即可.【詳解】解:1000名考生的成績是總體的一個樣本;故①不符合題意;55000名考生的成績是總體;故②不符合題意;樣本容量是1000,描述正確,故③符合題意;故選B【點睛】本題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大?。畼颖救萘渴菢颖局邪膫€體的數(shù)目,不能帶單位.二、填空題1、(2,-2)【解析】【分析】利用點平移的坐標規(guī)律,把A點的橫坐標加4,縱坐標減3即可得到點A′的坐標.【詳解】解:將點A(-2,1)向右平移4個單位長度,再向下平移3個單位長度得到點A',則點A′的坐標是(-2+4,1-3),即A′(2,-2).故答案為:(2,-2).【點睛】此題主要考查坐標與圖形變化-平移,掌握平移中點的變化規(guī)律:橫坐標右移加,左移減;縱坐標上移加,下移減是解題的關鍵.2、##3.5##【解析】【分析】延長AB、CF交于點H,由“ASA”可證△AFH≌△AFC,可得AC=AH=12,HF=CF,由三角形中位線定理可求解.【詳解】解:如圖,延長、交于點,四邊形是平行四邊形,,,,平分,,在和中,,,,,,點是的中點,,∴EF是△CBH的中位線,,故答案為:.【點睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,三角形中位線等知識,添加恰當輔助線構(gòu)造全等三角形是本題的關鍵.3、23【解析】【分析】點到x軸的距離等于縱坐標的絕對值,到y(tǒng)軸的距離等于橫坐標的絕對值,據(jù)此即可得答案.【詳解】∵點的坐標為,∴點到軸的距離為,到軸的距離為.故答案為:2;3【點睛】本題考查了點的坐標,熟記點到x軸的距離等于縱坐標的絕對值,到y(tǒng)軸的距離等于橫坐標的絕對值是解題的關鍵.4、【解析】【分析】先求出y1,y2的值,再比較出其大小即可.【詳解】解:∵點P1(3,y1)、P2(2,y2)在一次函數(shù)y=8x-1的圖象上,∴y1=8×3-1=23,y2=8×2-1=15,∵23>15,∴y1>y2.故答案為:>.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特點,熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.5、或##或【解析】【分析】設P(m,2),過A作AE⊥直線l于點E,延長AB與l交于點D,根據(jù)S△PAB=S△PAD?S△PBD列出m的方程,進行解答便可.【詳解】解:設P(m,2),過A作AE⊥直線l于點E,延長AB與l交于點D,如圖,∴E(1,2)∵A(1,-1)、B(2,0)設直線AB的解析式為y=kx+b,把A(1,-1)、B(2,0)代入上式得,解得∴直線AB的解析式為y=x-2,當y=2時,2=x-2,則x=4,∴D(4,2),∴ED=3,PD=|4–m|,∴S△PAB=S△PAD?S△PBD=,∴∴解得,m=-6或14,∴P(-6,2)或(14,2).故答案為:(-6,2)或(14,2).【點睛】本題主要考查了三角形的面積計算,圖形與坐標特征,關鍵是根據(jù)S△PAB=S△PAD?S△PBD列出方程解答.6、【解析】【分析】根據(jù)縱坐標的絕對值就是點到x軸的距離即可求得的值.【詳解】因為點到軸的距離是3,所以,解得.故答案為:.【點睛】本題考查了坐標與圖形的性質(zhì),橫坐標的絕對值就是點到y(tǒng)軸的距離,縱坐標的絕對值就是點到x軸的距離,掌握坐標的意義是解題的關鍵.7、3【解析】【分析】由題意以及正方形的性質(zhì)得OP過正方形ABCD各邊的中點時,d最大,求出d的值即可得出答案【詳解】解:如圖:設AB的中點是E,OP過點E時,點O與邊AB上所有點的連線中,OE最小,此時d=PE最大,∵正方形ABCD邊長為6,O為正方形中心,∴AE=3,∠OAE=45°,OE⊥AB,∴OE=3,∵OP=6,∴d=PE=6-3=3;故答案為:3【點睛】本題考查正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),根據(jù)題意得出d最大時點P的位置是解題的關鍵.8、4【解析】【分析】利用多邊形的內(nèi)角和與外角和公式列出方程,求得多邊形的邊,再利用正多邊形的性質(zhì)可得答案.【詳解】解:設多邊形的邊數(shù)為n,根據(jù)題意(n-2)?180°=360°,解得n=4.所以正多邊形為正方形,所以這個正多邊形有4條對稱軸,故答案為:4.【點睛】本題考查了多邊形的內(nèi)角和公式與多邊形的外角和定理,解一元一次方程,需要注意,多邊形的外角和與邊數(shù)無關,任何多邊形的外角和都是360°,也考查的正多邊形的對稱軸的條數(shù).三、解答題1、(1)見解析(2)AE2+GF2=EG2,證明見解析【解析】【分析】(1)根據(jù)“SAS”證明△ADE≌△CDE即可;(2)連接CG,可得CG=GF=GH=FH,再證明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,進而可得線段AE,EG和GF之間的數(shù)量關系.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠ADE=∠CDE,在△ADE和△CDE中,∴△ADE≌△CDE,∴AE=CE;(2)AE2+GF2=EG2,理由:連接CG∵△ADE≌△CDE,∴∠1=∠2.∵G為FH的中點,∴CG=GF=GH=FH,∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,在Rt△CEG中,CE2+CG2=EG2,∴AE2+GF2=EG2.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形的性質(zhì),以及勾股定理等知識,證明△ADE≌△CDE是解(1)的關鍵,證明∠ECG=90°是解(2)的關鍵.2、(1)A種產(chǎn)品生產(chǎn)400件,B種產(chǎn)品生產(chǎn)200件(2)A種產(chǎn)品生產(chǎn)1000件時,利潤最大為460000元【解析】【分析】(1)設A種產(chǎn)品生產(chǎn)x件,則B種產(chǎn)品生產(chǎn)(600-x)件,根據(jù)600件產(chǎn)品用220000元資金,即可列方程求解;(2)設A種產(chǎn)品生產(chǎn)x件,總利潤為w元,得出利潤w與A產(chǎn)品數(shù)量x的函數(shù)關系式,根據(jù)增減性可得,A產(chǎn)品生產(chǎn)越多,獲利越大,因而x取最大值時,獲利最大,據(jù)此即可求解.(1)解:設A種產(chǎn)品生產(chǎn)x件,則B種產(chǎn)品生產(chǎn)(600-x)件,由題意得:,解得:x=400,600-x=200,答:A種產(chǎn)品生產(chǎn)400件,B種產(chǎn)品生產(chǎn)200件.(2)解:設A種產(chǎn)品生產(chǎn)x件,總利潤為w元,由題意得:由,得:,因為10>0,w隨x的增大而增大,所以當x=1000時,w最大=460000元.【點睛】本題考查一元一次方程、一元一次不等式以及一次函數(shù)的實際應用.解答本題的關鍵是明確題意,利用一次函數(shù)的性質(zhì)和不等式的性質(zhì)解答.3、(1)y=-8x+15(0≤x≤)(2)小時【解析】【分析】(1)由圖象可知一次函數(shù)過(0,15),(1,7)兩點,可根據(jù)待定系數(shù)法列方程,求函數(shù)關系式.(2)將y=0的值代入,求x的解,即為蠟燭全部燃燒完所用的時間;(1)由圖象可知過(0,15),(1,7)兩點,設一次函數(shù)表達式為y=kx+b,∴,解得,∴此一次函數(shù)表達式為:y=-8x+15(0≤x≤).(2)令y=0∴-8x+15=0解得:x=,答:經(jīng)過小時蠟燭燃燒完畢.【點睛】本題考查了用待定系數(shù)法求一次函數(shù)關系式,并會用一次函數(shù)研究實際問題,具備在直角坐標系中的讀圖能力.4、(1)A(﹣4,0),B(﹣4,12);(2);(3)【解析】【分析】(1)利用二次根式的性質(zhì)求出a,b的值即可.(2)如圖1中,過點E作EH⊥AB于H,EJ⊥OA于J.證明△BHE≌△FJE(ASA),推出BH=FJ=10,可得結(jié)論.(3)分三種情形討論求解①如圖2中,當0≤t≤4時,重疊部分是四邊形MNA′O′.②如圖3中,當4<t≤8時,重疊部分是四邊形MNKP.③如圖4中,當8<t<12時,重疊部分是四邊形BMPC.④當t≥12時,沒有重疊部分;(1)解:∵b12,∴,∴a=4,b=12,∴A(﹣4,0),B(﹣4,12).(2)解:如圖1中,過點E作EH⊥AB于H,EJ⊥OA于J.∵四邊形ABCO是矩形,∴∠OAB=90°.∵A(﹣4,0),B(﹣4,12),∴OA=4,AB=OC=12.∵AD平分∠OAB,∴∠DAO=45°.∵∠AOD=90°,∴△AOD是等腰直角三角形,∴OA=OD=4,∴D(0,4).∵AE=ED,∴E(﹣2,2),∴EH=EJ=2,∴BH=12-2=10.∵∠BEF=∠HEJ=90°,∴∠BEH=∠FEJ.∵∠BHE=∠FJE=90°,∴△BHE≌△FJE(ASA),∴BH=FJ=10,∴EF2.(3)解:∵OA=OD=4,∴AD=,∴當A'與D重合時,t=4;當MO'與BC重合時,A'運動的路徑長為8,此時t=8;當NA'與BC重合時,A'運動的路徑長為12,此時t=12;①如圖2﹣1中,當0≤t≤4時,重疊部分是四邊形MNA'O',在Rt△ANA'中,∵AN2+A'N2=A'A2,∴NA'=,∴S=MN?NA'=4t=2t.②如圖2﹣2中,當4t≤8時,重疊部分是四邊形MNKP,5、(1)甲種獎品的單價為20元/件,乙種獎品的單價為10元/件;(2)當學習購買20件甲種獎品、40件乙種獎品時,總費用最少,最少費用是800元.【解析】【分析】(1)設甲種獎品的單價為x元/件,乙種獎品的單價為y元/件,根據(jù)“購買1件甲種獎品和2件乙種獎品共需40元,購買2件甲種獎品和3件乙種獎品共需70元”,即可得出關于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設購買甲種獎品m件,則購買乙種獎品(60-m)件,設購買兩種獎品的總費用為w,由甲種獎品的數(shù)量不少于乙種獎品數(shù)量的一半,可得出關于m的一元一次不等式,解之可得出m的取值范圍,再由總價=單價×數(shù)量,可得出w關于m的函數(shù)關系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.(1)設甲種獎品的單價為x元/件,乙種獎品的單價為y元/件,依題意,得:x+2y=402x+3y=70解得x=20y=10答:甲種獎品的單價為20元/件,乙種獎品的單價為10元/件.(2)設購買甲種獎品m件,則購買乙種獎品(60-m)件,設購買兩種獎品的總費用為w元,∵甲種獎品的數(shù)量不少于乙種獎品數(shù)量的一半,∴m≥(60-m),∴m≥20.依題意,得:w=20m+10(60-m)=10m+600,∵10>0,∴w隨m值的增大而增大,∴當學校購買20件甲種獎品、40件乙種獎品時,總費用最少,最少費用是800元.【點睛】本題考查了二元一次方程組的應用、一元一次不等式的應用以及一次函數(shù)的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關系,找出w關于m的一次函數(shù)關系式.6、(1)①見解析;②見解析(2)是,見解析(3)【解析】【分析】(1)①根據(jù)DE∥AB,得出∠EDC=∠ABM,根據(jù)CE∥AM,∠ECD=∠ADB,根據(jù)AM是△ABC的中線,且D與M重合,得出BD=DC,再證△ABD≌△EDC(ASA)即可;②由①得△ABD≌△EDC,得出AB=ED,根據(jù)AB∥ED,即可得出結(jié)論.(2)如圖,設延長BM交EC于點F,過M作ML∥DC交CF于L,先證四邊形MDCL為平行四邊形,得出ML=DC=BD,可證△BMD≌△MFL(AAS),再證△ABM≌△EMF(ASA),可證四邊形ABME是平行四邊形;(3)過點D作DG∥BN交AC于點G,根據(jù)M為AD的中點,DG∥MN,得出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食堂運營管理制度
- 幼兒園階段性家長會記錄與總結(jié)
- 制造業(yè)數(shù)字化車間管理方案
- 2026年化工數(shù)字化創(chuàng)新報告
- 互聯(lián)網(wǎng)平臺數(shù)據(jù)隱私保護方案
- 辦公樓清潔保潔日常管理手冊
- 2025年文化旅游產(chǎn)業(yè)沉浸式體驗與品牌建設創(chuàng)新報告
- 初中數(shù)學教材章節(jié)目錄
- 焊工安全與職業(yè)健康標準操作規(guī)程
- 八年級英語短語高頻匯編
- 2025至2030中國面食行業(yè)市場深度分析及前景趨勢與投資報告
- 2026年滇池學院招聘工作人員(97人)備考題庫及答案1套
- 期末檢測卷(試題)-2025-2026學年一年級上冊數(shù)學 蘇教版
- 2026年土壤改良服務合同協(xié)議
- 2026年樂陵市市屬國有企業(yè)公開招聘工作人員6名備考題庫參考答案詳解
- (高清版)DB11∕T 1455-2025 電動汽車充電基礎設施規(guī)劃設計標準
- 《EVA生產(chǎn)流程》課件
- 英語動詞大全100個
- ASTM-D3359-(附著力測試標準)-中文版
- 竣工決算服務方案模版
- 貴州醫(yī)科大學
評論
0/150
提交評論