版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青島版8年級數(shù)學下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、二次根式有意義,則x滿足的條件是()A.x<2 B.x>2 C.x≥2 D.x≤22、若是關于x的一元一次方程,則m的值為(
)A. B.3 C. D.13、下列對△ABC的判斷,不正確的是(
)A.若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形B.若AB:BC:CA=1:2:,則△ABC是直角三角形C.若AB=BC,∠A=60°,則△ABC是等邊三角形D.若AB=BC,∠C=50°,則∠B=50°4、下列各數(shù)是無理數(shù)的是(
)A.﹣ B.﹣1 C.﹣ D.05、點N(3,﹣2)先向左平移3個單位,又向上平移2個單位得到點M,則點M的坐標為(
)A.(0,0) B.(0,﹣4) C.(6,﹣4) D.(6,0)6、估計(
)A.在6和7之間 B.在5和6之間 C.在4和5之間 D.在3和4之間7、如圖,△ABC中,∠ACB=90°,AC=4,BC=3,將△ADE沿DE翻折,使點A與點B重合,則AE的長為(
)A. B.3 C. D.8、若m=1+,則以下對m的值估算正確的是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、點(—3,—4)關于原點對稱的點坐標是____.2、在平面直角坐標系中,對進行循環(huán)往復的軸對稱變換,若原來點的坐標是,則經(jīng)過第2021次變換后所得的A點的坐標是__________.3、如圖,△OAB1,△B1A1B2,△B2A2B3,…,△BnAnBn+1都是面積為的等邊三角形,邊AO在y軸上,點B1,B2,B3,…,Bn,Bn+1都在直線y=x上,點A1,A2,A3,...,An都在直線y=x的上方,觀察圖形的構成規(guī)律,用你發(fā)現(xiàn)的規(guī)律直接寫出點A2022的坐標為_____.4、如圖,有一個棱柱,底面是邊長為2.5厘米的正方形,側面都是長為12厘米的長方形.在棱柱一底面的頂點A處有一只螞蟻,它想吃B點的食物,那它需要爬行的最短路程是______厘米.5、小明同學非常喜歡數(shù)學,他在課外書上看到了一個有趣的定理“中線長定理”:在△ABC中,若O為BC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運動,則的最小值為______.6、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D.若AC=3,AB=5,則BC=_____,CD=_____.7、正方形A1B1C1O,A2B2C2C1,A3BC3C2,…按如圖所示的方式放置.點A1,A2,A3,…和點C1,C2,C3,…分別在直線y=kx+b(k>0)和y軸上,已知點B1(1,1),B2(2,3),則點B3的坐標是_____,點Bn的坐標是_____.三、解答題(7小題,每小題10分,共計70分)1、計算:(1)計算:+()﹣1;(2)求x的值:(x﹣1)2﹣4=0.2、如圖1,在平面直角坐標系中,已知直線l:y=kx+b與x軸交于點A,與y軸交于點B,與直線CD相交于點D,其中AC=14,C(﹣6,0),D(2,8).(1)求直線l的函數(shù)解析式;(2)如圖2,點P為線段CD延長線上的一點,連接PB,當△PBD的面積為7時,將線段BP沿著y軸方向平移,使得點P落在直線AB上的P'處,求點P′到直線CD的距離;(3)若點E為直線CD上的一點,則在平面直角坐標系中是否存在點F,使以點A,D,E,F(xiàn)為頂點的四邊形為菱形?若存在,求出所有滿足條件的點F的坐標;若不存在,請說明理由.3、濟南某社區(qū)為倡導健康生活,推進全民健身,去年購進A,B兩種健身器材若干件.經(jīng)了解,B種健身器材的單價是A種健身器材的1.5倍,用6000元購買A種健身器材比用3600元購買B種健身器材多15件.(1)A,B兩種健身器材的單價分別是多少元?(2)若今年兩種健身器材的單價和去年保持不變,該社區(qū)計劃再購進A,B兩種健身器材共60件,且B種健身器材的數(shù)量不少于A種健身器材的4倍,請你確定一種購買方案使得購進A,B兩種健身器材的費用最少.4、計算題(1)計算:;(2)化簡:.5、計算或解方程:(1).(2).6、如圖,在△ABC中,∠ACB=90°,BC>AC,CD⊥AB于點D,點E是AB的中點,連接CE.(1)若AC=3,BC=4,求CD的長;(2)求證:BC2﹣AC2=2DE?AB;(3)求證:CE=AB.7、如圖1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于E.(1)發(fā)現(xiàn):如圖1,連接CE,則△BCE的形狀是_______________,∠CDB=____________°;(2)探索:如圖2,點P為線段AC上一個動點,當點P在CD之間運動時,連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ,即△BPQ是等邊三角形;思路:在線段BD上截取點H,使DH=DP,得等邊△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易證△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等邊三角形.試判斷線段DQ、DP、AD之間的關系,并說明理由;(3)類比:如圖3,當點P在AD之間運動時連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ.①試判斷△BPQ的形狀,并說明理由;②若AD=2,設AP=x,DQ=y,請直接寫出y與x之間的函數(shù)關系式.-參考答案-一、單選題1、B【解析】【分析】根據(jù)二次根式的性質和分式的意義,被開方數(shù)大于等于0,分母不等于0,列不等式求解.【詳解】解:根據(jù)題意得:x﹣2>0,解得,x>2.故選:B.【點睛】主要考查了二次根式的意義和性質.概念:式子(a≥0)叫二次根式.性質:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.當二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.2、A【解析】【分析】根據(jù)一元一次方程的定義,可列方程和不等式,即可求m的值.【詳解】解:∵是關于x的一元一次方程,∴,解得,故選:A.【點睛】本題考查了一元一次方程的定義,絕對值,利用一元一次方程的定義解決問題是本題的關鍵.3、D【解析】【分析】根據(jù)等腰三角形,等邊三角形,直角三角形的判定以及三角形的內角和定理即可作出判斷.【詳解】解:A.若∠A:∠B:∠C=1:2:3,則∠A=30°,∠B=60°,∠C=90°,所以△ABC是直角三角形,故此選項正確,不符合題意;B.若AB:BC:CA=1:2:,則12+()2=22,那么這個三角形是直角三角形,故此選項正確,不符合題意;C.若AB=BC,∠A=60°,則∠A=∠C=60°,∠B=60°,所以△ABC是等邊三角形,故此選項正確,不符合題意;D.若AB=BC,∠C=50°,則∠A=∠C=50°,∠B=80°,故此選項錯誤,符合題意.故選:D.【點睛】本題考查了等腰三角形的判定、直角三角形的判定以及等邊三角形的判定.根據(jù)已知條件解出三角形中的角是解題的關鍵.4、A【解析】【分析】根據(jù)無理數(shù)的定義,“無限不循環(huán)的小數(shù)是無理數(shù)”逐個分析判斷即可.【詳解】解:A.﹣是無理數(shù),符合題意,
B.﹣1是有理數(shù),不符合題意,
C.﹣是有理數(shù),不符合題意,D.0是有理數(shù),不符合題意,故選A【點睛】本題考查了無理數(shù),解答本題的關鍵掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有的數(shù).5、A【解析】【分析】把點N的橫坐標減3,縱坐標加2即可得到點M的坐標.【詳解】解:根據(jù)題意得點M的橫坐標為3-3=0,縱坐標為-2+2=0,∴點M的坐標為(0,0).故選:A.【點睛】本題考查了點的平移規(guī)律;正確理解點的平移,左右平移只改變點的橫坐標,左減右加;上下平移只改變點的縱坐標,上加下減是解題的關鍵.6、B【解析】【分析】根據(jù)題意可得,從而得到,即可求解.【詳解】解:∵,∴,∴,即在5和6之間.故選:B【點睛】本題主要考查了無理數(shù)的估計,根據(jù)題意得到是解題的關鍵.7、D【解析】【分析】先利用折疊的性質得到,設,則,,在中,根據(jù)勾股定理可得到,求解即可.【詳解】解:∵沿DE翻折,使點A與點B重合,∴,∴,設,則,,在中,∵,∴,解得,∴,故選:D.【點睛】本題考查了折疊的性質及勾股定理的應用,理解題意,熟練掌握勾股定理解三角形是解題關鍵.8、C【解析】【分析】根據(jù)的范圍進行估算解答即可.【詳解】解:∵1<<2,∴2<1+<3,即2<m<3,故選:C.【點睛】此題主要考查了無理數(shù)的估算能力,現(xiàn)實生活中經(jīng)常需要估算,估算應是我們具備的數(shù)學能力,“夾逼法”是估算的一般方法,也是常用方法.二、填空題1、(3,4)【解析】【分析】根據(jù)關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù),據(jù)此分析即可.【詳解】解:點(—3,—4)關于原點對稱的點坐標是(3,4)故答案為:(3,4)【點睛】本題考查了原點對稱的兩個點的特征,掌握關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù)是解題的關鍵.2、【解析】【分析】觀察圖形可知每四次對稱為一個循環(huán)組依次循環(huán),用2021除以4,然后根據(jù)商和余數(shù)的情況確定出變換后的點所在的象限,然后解答即可.【詳解】解:∵點第一次關于軸對稱后在第四象限,點第二次關于軸對稱后在第三象限,點第三次關于軸對稱后在第二象限,點第四次關于軸對稱后在第一象限,即點回到原始位置,∴每四次對稱為一個循環(huán)組依次循環(huán),∵,∴經(jīng)過第2021次變換后所得的點與第一次變換的位置相同,在第四象限.故答案為:.【點睛】本題考查了軸對稱的性質,點的坐標變換規(guī)律,讀懂題目信息,觀察出每四次對稱為一個循環(huán)組依次循環(huán)是解題的關鍵,也是本題的難點.3、,【解析】【分析】過作軸,垂足為,由條件可求得,利用直角三角形的性質可求得,,可求得的坐標,同理可求得、的坐標,則可得出規(guī)律,可求得的坐標.【詳解】如圖,,△,△,都是邊長為2的等邊三角形,,,在軸上,軸,軸,過作軸,垂足為,點在在直線上,設,,是面積為的等邊三角形,都是邊長為的等邊三角形,,,的坐標為,,同理,、,,的坐標為,,故答案為,.【點睛】本題為規(guī)律型題目,利用等邊三角形和直角三角形的性質求得的坐標,從而總結出點的坐標的規(guī)律是解題的關鍵.4、13【解析】【分析】把長方體展開為平面圖形,分兩種情形求出AB的長即可判斷.【詳解】解:把長方體展開為平面圖形,分兩種情形:如圖1中,AB=(cm),如圖2中,AB=(cm),∵13<,∴爬行的最短路徑是13cm,故答案為:13.【點睛】本題考查平面展開-最短路徑問題,解題的關鍵是學會用轉化的思想思考問題.5、10【解析】【分析】根據(jù)矩形的性質得,,即,,即可得.【詳解】解:如圖,設點M為DE的中點,點N為FC的中點,連接MN交半圓于點P,此時PN取最小值,∵DE=4,四邊形DEFG為矩形,∴,,∴,∴,∴,故答案為:10.【點睛】本題考查了矩形的性質,三角形三條邊的關系,中線長定理,解題的關鍵是掌握中線長定理.6、
4
【解析】【分析】由勾股定理求出BC的長,再由面積法求出CD的長即可.【詳解】解:∵∠ACB=90°,AC=3,AB=5,∴BC=,∵CD⊥AB,∴S△ABC=AB×CD=AC×BC,∴CD=,故答案為:4,.【點睛】本題考查了勾股定理以及三角形面積,熟練掌握勾股定理是解題的關鍵.7、
(4,7)
(2n-1,2n-1)【解析】【分析】先由點B1(1,1)得到點A1的坐標,然后由B2(2,3)得到A2的坐標,進而得到直線的解析式,再令y=3求得點A3的坐標,從而求得點B3的坐標,?,再依次求得點Bn的坐標.【詳解】解:∵點B1(1,1),B2(2,3),∴點A1(1,0),A2(2,1),將點A1(1,0),A2(2,1)代入y=kx+b得,,解得:,∴直線的解析式為y=x-1,令y=3得,x-1=3,∴x=4,∴點A3的坐標為(4,3),∴A3B3=4,∴B3的坐標為(4,7),令y=7得,x-1=7,∴x=8,∴點A4的坐標為(8,7),∴A4B4=8,∴B4的坐標為(8,15),?,∴點Bn的坐標為(2n-1,2n-1),故答案為:(4,7),(2n-1,2n-1).【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、正方形的性質,解題的關鍵是通過一次函數(shù)圖象上點的坐標特征求得系列點B的坐標.三、解答題1、(1)6(2)或-1【解析】【分析】(1)先根據(jù)平方根,零指數(shù)冪,負整數(shù)指數(shù)冪化簡,再計算,即可求解;(2)先移項,再根據(jù)平方根的性質,可得或,即可求解.(1)解:+()﹣1;(2)解:(x﹣1)2﹣4=0移項得:,∴或,解得:或-1.【點睛】本題主要考查了平方根的性質,零指數(shù)冪,負整數(shù)指數(shù)冪,熟練掌握平方根的性質,零指數(shù)冪,負整數(shù)指數(shù)冪法則是解題的關鍵.2、(1)直線l的函數(shù)解析式為(2)點到直線的距離為(3)存在點或或或,使以點A,D,E,F(xiàn)為頂點的四邊形為菱形.【解析】【分析】(1)用待定系數(shù)法即可求解;(2)由△PBD的面積求出點P的坐標,進而求出點P'(5,4),構建△P'DN用解直角三角形的方法即可求解;(3)分AD是菱形的邊、AD是菱形的對角線兩種情況,利用圖象平移和中點公式,分別求解即可.(1)解:∵,點A在點C右側,∴.∵直線l與直線相交于點,∴解得
∴直線l的函數(shù)解析式為.(2)解:如圖1,過點P作軸于點N,作軸,交于點,過點作于點M,過點D作軸于點E,設與y軸交于點F,設直線的解析式為,∵,∴解得∴直線的解析式為.∴.∴∵,∴∵直線l的解析式為,∴.∴.∴.設,∵,∴,即,解得.∴.∵將線段沿著y軸方向平移,使得點P落在直線上的處,∴.∴.∴.∵,∴.∵,∴是等腰直角三角形.∴,即點到直線的距離為.(3)解:①如圖2,當、為邊時,∵,∴.∵四邊形是菱形,∴.∵直線的解析式為,∴可設直線的解析式為.∵,∴,解得.∴直線的解析式為.設,∴,解得.∴.當、為邊時,∵,∴.∵四邊形是菱形,∴.∵直線的解析式為,∴可設直線的解析式為.∵,∴-,解得.∴直線的解析式為.設,∴,解得或(舍去),∴.②如圖3,當為對角線時,則.由①得直線的解析式為.設,∵,∴,解得.∴.綜上所述,存在點或或或使以點A,D,E,F(xiàn)為頂點的四邊形為菱形.【點睛】本題考查的是二次函數(shù)綜合運用,涉及到二次函數(shù)的性質、平行四邊形的性質、圖形的平移、面積的計算等,分類求解解題的關鍵.3、(1)A,B兩種健身器材的單價分別是240元,360元(2)購買A種健身器材12件B種健身器材48件時費用最小【解析】【分析】(1)設A種健身器材的單價為x元/件,B種健身器材的單價為1.5x元/件,根據(jù)“用6000元購買A種健身器材比用3600元購買B種健身器材多15件”,列出分式方程,解之即可得出結論;(2)設購買A種健身器材m件,則購買B種的健身器材(60-m)件,B種健身器材的數(shù)量不少于A種健身器材的4倍列出不等式和購買兩種器材的費用列出函數(shù)關系式然后進行討論即可.(1)設A種健身器材的單價為x元,B種健身器材的單價為1.5x元,根據(jù)題意得:﹣=15,解得:x=240,經(jīng)檢驗x=240是原方程的解,且符合題意,則1.5×240=360(元),答:A,B兩種健身器材的單價分別是240元,360元;(2)設購買A種型號健身器材m件,則購買B種型號的健身器材(60﹣m)件,總費用為y元,根據(jù)題意得:,解得:0≤x≤12,y=240m+360(60﹣m)=﹣120m+21600,∵﹣120<0,∴y隨m的增大而減小,∴當m取最大值12時,即購買A種器材12件,購買B種健身器材60﹣12=48件時y最?。穑嘿徺IA種健身器材12件B種健身器材48件時費用最小.【點睛】本題考查了一次函數(shù)的應用和分式方程的應用,關鍵是找準數(shù)量關系列出方程和函數(shù)關系式以及m的取值范圍.4、(1)2(2)【解析】【分析】(1)先化簡根式,求絕對值和零指數(shù)冪,然后進行加減運算即可;(2)先通分、因式分解,然后計算乘除即可.(1)解:(2)解:【點睛】本題考查了有理數(shù)的混合運算,分式化簡.解題的關鍵在于正確的計算和因式分解.5、(1)(2)【解析】【分析】(1)先化簡各式,然后再進行計算即可;(2)按照解分式方程的步驟進行計算即可解答.(1)解:,,,;(2)解:,,解得:,檢驗:當時,,是原方程的根.【點睛】本題考查了解分式方程,實數(shù)的運算,零指數(shù)冪,解題的關鍵是一定要注意解分式方程必須檢驗.6、(1)(2)見解析(3)見解析【解析】【分析】(1)根據(jù)勾股定理求出AB,根據(jù)三角形的面積公式計算,求出CD;(2)根據(jù)題意得到BD﹣AD=2DE,根據(jù)勾股定理計算即可證明;(3)延長CE至點F,使EF=CE,連結AF,證明△AEF≌△BEC(SAS),根據(jù)全等三角形的性質得到∠B=∠EAF,AF=BC,再證明△ACF≌△CAB,得到CF=AB,證明結論.(1)解:在△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,∵∠ACB=90°,CD⊥AB,∴S△ABC=AC?BC=AB?DE,即×3×4=×5×CD,解得:CD=;(2)證明:∵點E是AB的中點,∴AE=BE,∴BD﹣AD=(BE+DE)﹣(AE﹣DE)=BE﹣AE+2DE=2DE,∵CD⊥AB,∴BC2=BD2+CD2,AC2=AD2+CD2,∴BC2﹣AC2=(BD2+CD2)﹣(AD2+CD2)=BD2﹣AD2=(BD+AD)(BD﹣AD)=AB?2DE=2DE?AB;(3)證明:延長CE至點F,使EF=CE,連結AF,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴∠B=∠EAF,AF=BC,∵∠ACB=90°,∴∠B+∠CAB=∠EAF+∠CAB=90°,∴∠CAF=∠ACB=90°,∵AC=CA,∴△ACF≌△CAB(SAS),∴CF=AB,∵CF=2CE,∴CE=AB.【點睛】本題考查的是全等三角形的判定和性質、三角形的面積計算、勾股定理的應用,掌握全等三角形的判定定理和性質定理是解題的關鍵.7、(1)等邊三角形,60;(2)AD=DQ+DP,見解析;(3)①△BPQ是等邊三角形,見解析;②y=-x+4【解析】【分析】(1)根據(jù)直角三角形的兩銳角互余求得∠ABC=60°,再根據(jù)角平分線的定義求得∠ABD=∠CBD=∠A=30°,則AD=BD,根據(jù)等腰三角形的性質證得AE=BE,再由直角三角形斜邊上的中線性質得出CE=BE,根據(jù)等邊三角形的判定即可得出結論;(2)根據(jù)思路和全等三角形的性質得出BH=DQ,結合AD=BD,BD=DH+BH即可解答;(3)延長BD至F,使DF=PD,連接PF,可證得△PDF是等邊三角形,則有PF=PD,∠F=∠PDF=∠DPF=60°,進而可得∠F=∠PDQ=60°,證明∠BPF=∠QPD,利用ASA證明△PBF≌△PQD,得出PB=PQ,BF=DQ,結合∠BPQ=60°和AD=BD即可得出①②的結論.(1)解:如圖1,∵在Rt△ABC中,∠ACB=90°,∠A=3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學農學(農村社會學)試題及答案
- 2025年大學大一(水產養(yǎng)殖學)水產養(yǎng)殖生態(tài)學基礎階段測試試題及答案
- 2026年客運司機(車輛檢查)試題及答案
- 2025年高職鐵道工程技術(鐵道施工基礎)試題及答案
- 2025年大學健康管理(慢病實操)試題及答案
- 2025年高職高分子材料工程技術(高分子工程工藝)試題及答案
- 2025年高職形象設計(婚慶造型設計)試題及答案
- 2025年高職應用心理學(咨詢技巧)試題及答案
- 2025年高職(客戶關系管理)客戶維護單元測試試題及答案
- 2026年運動營養(yǎng)(健身補劑選擇)試題及答案
- 原發(fā)性骨髓纖維化2026
- 2023-2024學年北京市海淀區(qū)清華附中八年級(上)期末數(shù)學試卷(含解析)
- 臨終決策中的醫(yī)患共同決策模式
- 2025年貴州省輔警考試真題附答案解析
- 半導體廠務項目工程管理 課件 項目6 凈化室系統(tǒng)的設計與維護
- 防護網(wǎng)施工專項方案
- 2026年及未來5年市場數(shù)據(jù)中國聚甲醛市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- TCFLP0030-2021國有企業(yè)網(wǎng)上商城采購交易操作規(guī)范
- 玻璃鋼水箱安裝詳細技術方案
- 2025廣東省佛山市南海公證處招聘公證員助理4人(公共基礎知識)測試題附答案解析
- 山東省煙臺市開發(fā)區(qū)2024-2025學年上學期期末八年級數(shù)學檢測題(含答案)
評論
0/150
提交評論