版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在和中,點,,,在同一直線上,,,只添加一個條件,能判定的是(
)A. B. C. D.2、如圖,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,點B,F(xiàn),C,D在同一條直線上,再增加一個條件,不能判定△ABC≌△EDF的是(
)A.AB=ED B.AC=EFC.AC∥EF D.BF=DC3、如圖,在和中,,,,則(
)A.30° B.40° C.50° D.60°4、如圖,∠B=∠E=90°,AB=DE,AC=DF,則△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL5、如圖,若,則的理由是(
)A.SAS B.AAS C.ASA D.HL第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,點P為BC邊上一動點,當BP=________時,形成的Rt△ABP與Rt△PCD全等.2、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點F,G為△ABC外一點,∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號).3、如圖,△ABC中,AB=BC,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF,若∠BAE=25°,則∠ACF=__________度.4、如圖,在Rt△ABC中,∠B=90°,以頂點C為圓心、適當長為半徑畫弧,分別交AC、BC于點E、F,再分別以點E、F為圓心,以大于EF的長為半徑畫弧,兩弧交于點P,作射線CP交AB于點D.若BD=4,AC=16,則△ACD的面積是______.5、如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點E,則∠ABE=_____°.三、解答題(5小題,每小題10分,共計50分)1、已知Rt△ABC中,∠BAC=90°,AB=AC,點E為△ABC內(nèi)一點,連接AE,CE,CE⊥AE,過點B作BD⊥AE,交AE的延長線于D.(1)如圖1,求證BD=AE;(2)如圖2,點H為BC中點,分別連接EH,DH,求∠EDH的度數(shù);(3)如圖3,在(2)的條件下,點M為CH上的一點,連接EM,點F為EM的中點,連接FH,過點D作DG⊥FH,交FH的延長線于點G,若GH:FH=6:5,△FHM的面積為30,∠EHB=∠BHG,求線段EH的長.2、在中,,,為直線上一點,連接,過點作交于點,交于點,在直線上截取,連接.(1)當點,都在線段上時,如圖①,求證:;(2)當點在線段的延長線上,點在線段的延長線上時,如圖②;當點在線段的延長線上,點在線段的延長線上時,如圖③,直接寫出線段,,之間的數(shù)量關(guān)系,不需要證明.3、在中,BE,CD為的角平分線,BE,CD交于點F.(1)求證:;(2)已知.①如圖1,若,,求CE的長;②如圖2,若,求的大小.4、如圖,在△ABC中,∠ACB=90°,用直尺和圓規(guī)在斜邊AB上作一點P,使得點P到點B的距離與點P到邊AC的距離相等.(保留作圖痕跡,不寫作法)5、如圖,已知△ABC.求作:BC邊上的高與內(nèi)角∠B的角平分線的交點.-參考答案-一、單選題1、B【解析】【分析】根據(jù)三角形全等的判定做出選擇即可.【詳解】A、,不能判斷,選項不符合題意;B、,利用SAS定理可以判斷,選項符合題意;C、,不能判斷,選項不符合題意;D、,不能判斷,選項不符合題意;故選:B.【考點】本題考查三角形全等的判定,根據(jù)SSS、SAS、ASA、AAS判斷三角形全等,找出三角形全等的條件是解答本題的關(guān)鍵.2、C【解析】【分析】根據(jù)全等三角形的判定方法即可判斷.【詳解】A.AB=ED,可用ASA判定△ABC≌△EDF;
B.AC=EF,可用AAS判定△ABC≌△EDF;
C.AC∥EF,不能用AAA判定△ABC≌△EDF,故錯誤;
D.BF=DC,可用AAS判定△ABC≌△EDF;
故選C.【考點】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定方法.3、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關(guān)鍵在于找出角度的數(shù)量關(guān)系.4、D【解析】【詳解】∵在Rt△ABC與Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故選D.5、D【解析】【分析】根據(jù)兩直角三角形全等的判定定理HL推出即可.【詳解】解:∠B=∠C=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故選:D.【考點】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.二、填空題1、2【解析】【分析】當BP=2時,Rt△ABP≌Rt△PCD,由BC=8可得CP=6,進而可得AB=CP,BP=CD,再結(jié)合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【詳解】當BP=2時,Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=2,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案為:2.【考點】本題考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解題的關(guān)鍵.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角相等時,角必須是兩邊的夾角.2、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,3、70【解析】【分析】先利用HL證明△ABE≌△CBF,可證∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【詳解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案為70.【考點】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.4、32【解析】【分析】過點D作DQ⊥AC,由作法可知CP是角平分線,根據(jù)角平分線的性質(zhì)知DB=DQ=3,再由三角形的面積公式計算即可.【詳解】解:如圖,過點D作DQ⊥AC于點Q,由作圖知CP是∠ACB的平分線,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=?AC?DQ=,故答案為32.【考點】本題主要考查作圖-基本作圖,三角形面積,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖及角平分線的性質(zhì).5、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,再利用角平分線的性質(zhì)得出BE為∠ABC的角平分線,即可求解.【詳解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,如圖所示,∵AE、CE是∠DAC和∠ACF的平分線,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分線,∴∠ABE=∠ABC=23.5°.故答案為:23.5.【考點】此題考查角平分線的性質(zhì):在角的內(nèi)部,到角的兩邊距離相等的點在角的平分線上,反之也是成立的.解題關(guān)鍵是利用角平分線的判定定理.三、解答題1、(1)見解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根據(jù)全等三角形的判定得出△CAE≌△ABD,進而利用全等三角形的性質(zhì)得出AE=BD即可;(2)根據(jù)全等三角形的判定得出△AEH≌△BDH,進而利用全等三角形的性質(zhì)解答即可;(3)過點M作MS⊥FH于點S,過點E作ER⊥FH,交HF的延長線于點R,過點E作ET∥BC,根據(jù)全等三角形判定和性質(zhì)解答即可.【詳解】證明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE與△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)連接AH∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH與△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°即∠EHD=90°,∴∠EDH=∠DEH=;(3)過點M作MS⊥FH于點S,過點E作ER⊥FH,交HF的延長線于點R,過點E作ET∥BC,交HR的延長線于點T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠EHR+∠DHG=90°,∴∠HDG=∠HER在△DHG與△HER中∴△DHG≌△HER(AAS),∴HG=ER,∵ET∥BC,∴∠ETF=∠BHG,∠EHB=∠HET,∠ETF=∠FHM,∵∠EHB=∠BHG,∴∠HET=∠ETF,∴HE=HT,在△EFT與△MFH中,∴△EFT≌△MFH(AAS),∴HF=FT,∴,∴ER=MS,∴HG=ER=MS,設(shè)GH=6k,F(xiàn)H=5k,則HG=ER=MS=6k,,k=,∴FH=5,∴HE=HT=2HF=10.【考點】本題考查全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會利用數(shù)形結(jié)合的思想思考問題,屬于壓軸題.2、(1)見解析;(2)圖②:;圖③:【解析】【分析】(1)過點作交的延長線于點.證明,根據(jù)全等三角形的性質(zhì)可得,.再證,由此即可證得結(jié)論;(2)圖②:,類比(1)中的方法證明即可;圖③:,類比(1)中的方法證明即可.【詳解】(1)證明:如圖,過點作交的延長線于點.0∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴.∴.∵,,∴.在和中,∴.∴.∵,∴.(2)圖②:.證明:過點作交于點.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴,∵∴.∴.∵,,∴.在和中,∴.∴.∵,∴.圖③:.證明:如圖,過點作交的延長線于點.∴.∵,∴,.∵,∴.∴.在和中,∴.∴,.∵,,∴.∴.∴.∵,,∴.在和中,∴.∴.∵,∴.【考點】本題是全等三角形的綜合題,正確作出輔助線,構(gòu)造全等三角形是解決問題的關(guān)鍵.3、(1)證明見解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形內(nèi)角和定理和角平分線得出的度數(shù),再由三角形內(nèi)角和定理可求出的度數(shù),(2)在BC上取一點G使BG=BD,構(gòu)造(SAS),再證明,即可得,由此求出答案;(3)延長BA到P,使AP=FC,構(gòu)造(SAS),得PC=BC,,再由三角形內(nèi)角和可求,,進而可得.【詳解】解:(1)、分別是與的角平分線,,,,(2)如解(2)圖,在BC上取一點G使BG=BD,由(1)得,,,∴,在與中,,∴(SAS)∴,∴,∴,∴在與中,,,,,;∵,,∴(3)如解(3)圖,延長BA到P,使AP=FC,,∴,在與中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)農(nóng)學(xué)(農(nóng)村社會學(xué))試題及答案
- 2025年大學(xué)大一(水產(chǎn)養(yǎng)殖學(xué))水產(chǎn)養(yǎng)殖生態(tài)學(xué)基礎(chǔ)階段測試試題及答案
- 2026年客運司機(車輛檢查)試題及答案
- 2025年高職鐵道工程技術(shù)(鐵道施工基礎(chǔ))試題及答案
- 2025年大學(xué)健康管理(慢病實操)試題及答案
- 2025年高職高分子材料工程技術(shù)(高分子工程工藝)試題及答案
- 2025年高職形象設(shè)計(婚慶造型設(shè)計)試題及答案
- 2025年高職應(yīng)用心理學(xué)(咨詢技巧)試題及答案
- 2025年高職(客戶關(guān)系管理)客戶維護單元測試試題及答案
- 2026年運動營養(yǎng)(健身補劑選擇)試題及答案
- 2025年雞飼料采購合同
- 模擬電子技術(shù)基礎(chǔ) 第4版黃麗亞課后參考答案
- 電信營業(yè)廳運營方案策劃書(2篇)
- JBT 14850-2024 塔式起重機支護系統(tǒng)(正式版)
- 專精特新申報材料范本
- 牽引供電系統(tǒng)短路計算-三相對稱短路計算(高鐵牽引供電系統(tǒng))
- (完整版)第一性原理
- 安全技術(shù)勞動保護措施管理規(guī)定
- 學(xué)習(xí)主題班會課件 高三寒假攻略
- 高一年級主任工作總結(jié)(4篇)
- 論高級管理人員應(yīng)具備的財務(wù)知識
評論
0/150
提交評論