版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,點E是△ABC內(nèi)一點,∠AEB=90°,D是邊AB的中點,延長線段DE交邊BC于點F,點F是邊BC的中點.若AB=6,EF=1,則線段AC的長為()A.7 B. C.8 D.92、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點,若點和點分別是線段和邊上的動點,則的最小值為()A.5 B.6 C.7 D.83、如圖,在菱形ABCD中,AB=5,AC=8,過點B作BE⊥CD于點E,則BE的長為()A. B. C.6 D.4、如圖,把一張長方形紙片ABCD沿AF折疊,使B點落在處,若,要使,則的度數(shù)應(yīng)為()A.20° B.55° C.45° D.60°5、如圖,OA⊥OB,OB=4,P是射線OA上一動點,連接BP,以B為直角頂點向上作等腰直角三角形,在OA上取一點D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運動時,PD的長度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個全等的直角三角形____()____2、如圖,△ABC中,D、E分別是AB、AC的中點,若DE=4cm,則BC=_____cm.3、如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.4、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.5、如圖,直線l1⊥l3,l2⊥l3,垂足分別為P、Q,一塊含有45°的直角三角板的頂點A、B、C分別在直線l1、l2、線段PQ上,點O是斜邊AB的中點,若PQ等于,則OQ的長等于_____.三、解答題(5小題,每小題10分,共計50分)1、(3)點P為AC上一動點,則PE+PF最小值為.2、如圖,已知正方形中,點是邊延長線上一點,連接,過點作,垂足為點,與交于點.(1)求證:;(2)若,,求BG的長.3、已知如圖,在中,點是邊上一點,連接,點是上一動點,連接.(1)如圖1,當(dāng)時,連接,延長交于點,求證:;(2)如圖2,以為直角邊作等腰,連接,若,當(dāng)點在運動過程中,求周長的最小值.
4、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).5、如圖,中,對角線AC、BD相交于點O,點E,F(xiàn),G,H分別是OA、OB、OC、OD的中點,順次連接EFGH.(1)求證:四邊形EFGH是平行四邊形(2)若的周長為2(AB+BC)=32,則四邊形EFGH的周長為__________-參考答案-一、單選題1、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長.【詳解】解:∵∠AEB=90,D是邊AB的中點,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點,點F是邊BC的中點,∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長是解題的關(guān)鍵.2、C【解析】【分析】連接AQ,過點D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計算即可;【詳解】連接AQ,過點D作,∵,面積為21,∴,∴,∵M(jìn)N垂直平分AB,∴,∴,∴當(dāng)AQ的值最小時,的值最小,根據(jù)垂線段最短可知,當(dāng)時,AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準(zhǔn)確分析計算是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)菱形的性質(zhì)求得的長,進(jìn)而根據(jù)菱形的面積等于,即可求得的長【詳解】解:如圖,設(shè)的交點為,四邊形是菱形,,,在中,,菱形的面積等于故選B【點睛】本題考查了菱形的性質(zhì),掌握菱形的性質(zhì),求得的長是解題的關(guān)鍵.4、B【解析】【分析】設(shè)直線AF與BD的交點為G,由題意易得,則有,由折疊的性質(zhì)可知,由平行線的性質(zhì)可得,然后可得,進(jìn)而問題可求解.【詳解】解:設(shè)直線AF與BD的交點為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質(zhì)可知,∵,∴,∴,∴;故選B.【點睛】本題主要考查折疊的性質(zhì)及矩形的性質(zhì),熟練掌握折疊的性質(zhì)及矩形的性質(zhì)是解題的關(guān)鍵.5、D【解析】【分析】過點作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過點作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長度保持不變,故選:D.【點睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識點,通過作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.二、填空題1、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個全等的直角三角形.故答案為:(1)×;(2)√【點睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關(guān)鍵.2、8【解析】【分析】運用三角形的中位線的知識解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.3、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.5cm,故答案為:2.5.【點睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長及證明EF=OD.4、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時,AP有最小值是本題關(guān)鍵.5、【解析】【分析】由“AAS”可證△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可證△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性質(zhì)和直角三角形的性質(zhì)可求解.【詳解】解:如圖,連接PO,并延長交l2于點H,∵l1⊥l3,l2⊥l3,∴l(xiāng)1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,,∴△ACP≌△CBQ(AAS),∴AP=CQ,PC=BQ,∴PC+CQ=AP+BQ=PQ=,∵AP∥BQ,∴∠OAP=∠OBH,∵點O是斜邊AB的中點,∴AO=BO,在△APO和△BHO中,,∴△APO≌△BHO(AAS),∴AP=BH,OP=OH,∴BH+BQ=AP+BQ=PQ,∴PQ=QH=,∵∠PQH=90°,∴PH=PQ=12,∵OP=OH,∠PQH=90°,∴OQ=PH=6.故答案為:6【點睛】本題主要考查了全等三角形的判定和性質(zhì),等腰三角形和直角三角形的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理,等腰三角形和直角三角形的性質(zhì)定理是解題的關(guān)鍵.三、解答題1、【分析】(1)根據(jù)折疊的性質(zhì)可得:∠1=∠2,再由矩形的性質(zhì),可得∠2=∠3,從而得到∠1=∠3,即可求解;(2)設(shè)FD=x,則AF=CF=8-x,再由勾股定理,可得DF=3,從而得到CF=5,即可求解;(3)連接PB,根據(jù)折疊的性質(zhì)可得△ECP≌△BCP,從而得到PE=PB,進(jìn)而得到當(dāng)點F、P、B三點共線時,PE+PF最小,最小值為BF的長,再由勾股定理,即可求解.【詳解】(1)解:△ACF是等腰三角形,理由如下:如圖,由折疊可知,∠1=∠2,∵四邊形ABCD是矩形,∴AB∥CD,∴∠2=∠3,∴∠1=∠3,∴AF=CF,∴△ACF是等腰三角形;(2)∵四邊形ABCD是矩形且AB=8,BC=4,∴AD=BC=4,CD=AB=8,∠D=90°,設(shè)FD=x,則AF=CF=8-x,在Rt△AFD中,根據(jù)勾股定理得AD2+DF2=AF2,∴42+x2=(8-x)2,解得x=3,即DF=3,∴CF=8-3=5,∴;(3)如圖,連接PB,根據(jù)折疊得:CE=CB,∠ECP=∠BCP,∵CP=CP,∴△ECP≌△BCP,∴PE=PB,∴PE+PF=PE+PB,∴當(dāng)點F、P、B三點共線時,PE+PF最小,最小值為BF的長,由(2)知:CF=5,∵BC=4,∠BCF=90°,∴,即PE+PF最小值為.【點睛】本題主要考查了矩形與折疊問題,等腰三角形的判定,熟練掌握矩形和折疊的性質(zhì)是解題的關(guān)鍵.2、(1)見解析;(2)【分析】(1)由正方形的性質(zhì)可得,,由的余角相等可得∠CBG=∠CDE,進(jìn)而證明△BCG≌△DCE,從而證明CG=CE;(2)證明正方形的性質(zhì)可得,結(jié)合已知條件即可求得,進(jìn)而勾股定理即可求得的長【詳解】(1)∵BF⊥DE∴∠BFE=90°∵四邊形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE∴,在中,【點睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,掌握三角形全等的性質(zhì)與判定與勾股定理是解題的關(guān)鍵.3、(1)證明見解析;(2)【分析】(1)通過證明△CEK≌△BEF及△KED≌△FED即可證明;(2)延長CE到點P,使EP=CE,先證明點G在過點P且與CE垂直的直線PN上運動,再作點E關(guān)于點P的對稱點Q,連接BQ交PN于點G,此時△BEG的周長最小,求出此時GE+GB+BE的值即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,∴∠K=∠ABE,∵BF⊥AB,∴∠ABF=90°,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∠EBC=∠ECB,∴∠KED=∠FED,∴ED=ED,∴△KED≌△FED(SAS),∴DK=DF,(2)如圖,作BN⊥BE,GN⊥BN于點N,延長NG交射線CE于點P,
則∠EBN=∠FBG=90°,∴∠NBG=∠EBF=90°﹣∠GBE,∵∠N=∠BEF=90°,BG=BF,∴△BNG≌△BEF(AAS),∴BN=BE;∵∠EBN=∠N=∠BEP=90°,∴四邊形BEPN是正方形,∴PE=BE=CE,∴當(dāng)點F在CE上運動時,點G在PN上運動;延長EP到點Q,使PQ=PE,連接BQ交PN于點G,∵PN垂直平分EQ,∴點Q與點E關(guān)于直線PN對稱,∵兩點之間,線段最短,∴此時GE+GB=GQ+GB=BQ最小,∵BE為定值,∴此時GE+GB+BE最小,即△BEG的周長最小;作DH⊥CE于點H,則∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=,∴DH=EH=1;∴CH=,∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ=,∴GE+GB+BE=,∴△BEG周長的最小值為.【點睛】本題重點考查平行四邊形的性質(zhì)、正方形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、以及運用軸對稱的性質(zhì)求線段和的最小值問題的求解等知識與方法,深入探究與挖掘題中的隱含條件并且正確地作出輔助線是解題的關(guān)鍵,此題綜合性強(qiáng),難度大,屬于考試壓軸題.4、(1)見解析;(2)90°【分析】(1)利用正方形的性質(zhì)得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結(jié)論;
(2)利用(1)的結(jié)論得出∠ADF=∠BAE,進(jìn)而求出∠BAE+∠DFA=90°,最后用三角形的內(nèi)角和定理即可得出結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030汽車行業(yè)產(chǎn)業(yè)鏈現(xiàn)狀供需分析及發(fā)展策略規(guī)劃研究報告
- 2025-2030汽車維修市場供需求分析及投資評估規(guī)劃報告
- 2025-2030汽車租賃服務(wù)行業(yè)市場供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030汽車電子競技設(shè)備市場供需變化與投資潛力
- 2025-2030汽車改裝零部件制造業(yè)技術(shù)進(jìn)步與市場拓展策略報告
- 2025-2030汽車發(fā)動機(jī)技術(shù)研究與發(fā)展路徑與節(jié)能減排研究報告
- 2026年跨境營銷策劃公司大客戶跨境營銷項目經(jīng)理崗位職責(zé)管理制度
- 計算過程中的誤差傳播管理方法
- 學(xué)校圖書資源管理與更新制度
- 基于邊緣計算的延遲優(yōu)化網(wǎng)絡(luò)性能管理
- 2025年青島市國企社會招聘筆試及答案
- 2026屆江西省撫州市臨川區(qū)第一中學(xué)高二上數(shù)學(xué)期末考試模擬試題含解析
- 民航華東地區(qū)管理局機(jī)關(guān)服務(wù)中心2025年公開招聘工作人員考試題庫必考題
- 云南省大理州2024-2025學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試卷(含解析)
- 物業(yè)管理法律法規(guī)與實務(wù)操作
- 高壓避雷器課件
- 體檢中心收費與財務(wù)一體化管理方案
- 四川省內(nèi)江市2024-2025學(xué)年高二上學(xué)期期末檢測化學(xué)試題
- 廣東省深圳市龍崗區(qū)2024-2025學(xué)年二年級上學(xué)期學(xué)科素養(yǎng)期末綜合數(shù)學(xué)試卷(含答案)
- 晝夜明暗圖課件
- 臨床成人吞咽障礙患者口服給藥護(hù)理
評論
0/150
提交評論