版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省義烏市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如下圖,在下列條件中,能判定AB//CD的是(
)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠42、如圖,∠C=88°=∠D,AD與BE相交于點(diǎn)E,若∠DBC=23°,則∠CAE的度數(shù)是()A.23° B.25° C.27° D.無(wú)法確定3、如圖,∠B+∠C+∠D+∠E―∠A等于()A.180° B.240° C.300° D.360°4、將一副學(xué)生用的三角板(一個(gè)銳角為30°的直角三角形,一個(gè)銳角為45°的直角三角形)如圖疊放,則下列4個(gè)結(jié)論中正確的個(gè)數(shù)有(
)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,則OC平分∠AOBA.0 B.1 C.2 D.35、如圖,點(diǎn)E在的延長(zhǎng)線上,下列條件不能判斷的是(
)A. B. C. D.6、如圖所示,過(guò)點(diǎn)P畫直線a的平行線b的作法的依據(jù)是()A.兩直線平行,同位角相等 B.同位角相等,兩直線平行C.兩直線平行,內(nèi)錯(cuò)角相等 D.內(nèi)錯(cuò)角相等,兩直線平行7、用反證法證明命題“三角形中必有一個(gè)內(nèi)角小于或等于60°”時(shí),首先應(yīng)該假設(shè)這個(gè)三角形中()A.有一個(gè)內(nèi)角小于60° B.每一個(gè)內(nèi)角都小于60°C.有一個(gè)內(nèi)角大于60° D.每一個(gè)內(nèi)角都大于60°8、如圖,∠B=∠C,則∠ADC與∠AEB的大小關(guān)系是(
)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關(guān)系不確定第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,三角形ABC中,D是AB上一點(diǎn),F(xiàn)是BC上一點(diǎn),E,H是AC上的點(diǎn),EF的延長(zhǎng)線交AB的延長(zhǎng)線于點(diǎn)G,連接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,則∠ADE的度數(shù)為_(kāi)_.2、如圖折疊一張矩形紙片,已知∠1=70°,則∠2的度數(shù)是__.3、如圖,在△ABC中,∠ACB=60°,D為△ABC邊AC上一點(diǎn),BC=CD,點(diǎn)M在BC的延長(zhǎng)線上,CE平分∠ACM,且AC=CE.連接BE交AC于F,G為邊CE上一點(diǎn),滿足CG=CF,連接DG交BE于H.以下結(jié)論:①△ABC≌△EDC;②∠DHF=60°;③若∠A=60°,則AB∥CE;④若BE平分∠ABC中,則EB平分∠DEC;正確的有_____(只填序號(hào))4、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長(zhǎng)線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.5、如圖,,的平分線交于點(diǎn),是上的一點(diǎn),的平分線交于點(diǎn),且,下列結(jié)論:①平分;②;③與互余的角有個(gè);④若,則.其中正確的是________.(請(qǐng)把正確結(jié)論的序號(hào)都填上)6、已知△ABC,∠A=80°,BF平分外角∠CBD,CF平分外角∠BCE,BG平分∠CBF,CG平分外角∠BCF,則∠G=______°.7、如圖,將三角形紙片ABC按如圖方式折疊:折痕分別為DC和DE,點(diǎn)A與BC邊上的點(diǎn)G重合,點(diǎn)B與DG延長(zhǎng)線上的點(diǎn)F重合.若滿足∠ACB=40°,則∠CEF=_______度.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,,.(1)試說(shuō)明;(2)若,且,求的度數(shù).2、在△ABC中,若存在一個(gè)內(nèi)角是另外一個(gè)內(nèi)角度數(shù)的n倍(n為大于1的正整數(shù)),則稱△ABC為n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC為2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,則△DEF為倍角三角形;(2)如圖,直線MN⊥直線PQ于點(diǎn)O,點(diǎn)A、點(diǎn)B分別在射線OP、OM上;已知∠BAO、∠OAG的角平分線分別與∠BOQ的角平分線所在的直線交于點(diǎn)E、F;①說(shuō)明∠ABO=2∠E的理由;②若△AEF為4倍角三角形,直接寫出∠ABO的度數(shù).3、已知:如圖,點(diǎn)A、B、C在一條直線上,AD∥BE,∠1=∠2,求證:∠A=∠E.4、如圖所示,已知,試判斷與的大小關(guān)系,并說(shuō)明理由.5、如圖,已知BD⊥AC,EF⊥AC,垂足分別為D、F,∠1=∠2,請(qǐng)將證明∠ADG=∠C過(guò)程填寫完整.證明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥∴∠ADG=∠C6、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點(diǎn)O.(1)求證:.(2)如圖1,若∠A=60°,請(qǐng)直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點(diǎn),連接FO.①求證:BC?BE?CD=2OF.②延長(zhǎng)FO交BC于點(diǎn)G,若OF=2,△DEO的面積為10,直接寫出OG的長(zhǎng).7、如圖所示,AE為△ABC的角平分線,CD為△ABC的高,若∠B=30°,∠ACB為70°.(1)求∠CAF的度數(shù);(2)求∠AFC的度數(shù).-參考答案-一、單選題1、C【解析】【詳解】根據(jù)平行線的判定,可由∠2=∠3,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故選C.2、A【解析】【分析】利用三角形的內(nèi)角和180°和對(duì)頂角相等求解即可.【詳解】解:∵∠C+∠CEA+∠CAE=180°,∠D+∠DEB+∠DBC=180°,又∠C=∠D,∠CEA=∠DEB,∴∠CAE=∠DBE=23°.故選:A.【考點(diǎn)】本題考查三角形的內(nèi)角和定理、對(duì)頂角相等,熟練掌握三角形的內(nèi)角和是180°是解答的關(guān)鍵.3、A【解析】【分析】根據(jù)三角形的外角的性質(zhì),得∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,兩式相加再減去∠A,根據(jù)三角形的內(nèi)角和是180°可求解.【詳解】∵∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,∴∠B+∠C+∠D+∠E-∠A=360°-(∠AGF+∠AFG+∠A),又∵∠AGF+∠AFG+∠A=180°,∴∠B+∠C+∠D+∠E-∠A=180°,故選A.【考點(diǎn)】本題考查了三角形外角的性質(zhì)、三角形內(nèi)角和定理,熟練掌握三角形外角的性質(zhì)以及三角形內(nèi)角和等于180度是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)同角的余角相等可得∠AOC=∠BOD;根據(jù)三角形的內(nèi)角和即可得出∠AOC-∠CEA=15°;根據(jù)角平分線的定義可判定OC平分∠AOB.【詳解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正確;如圖,AB與OC交于點(diǎn)P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正確;如果OB平分∠DOC,則∠DOB=∠BOC=45°,則∠AOC=∠BOC=45°,故OC平分∠AOB,故④正確;由②知:∠AOC=∠BOD,故當(dāng)∠AOC=∠BOD=45°時(shí),∠AOC+∠BOD=90°成立,否則不成立,故①不正確;綜上,②③④正確,共3個(gè),故選:D.【考點(diǎn)】本題考查了余角以及三角形內(nèi)角和定理,角平分線的定義,熟知余角的性質(zhì)以及三角形內(nèi)角和是180°是解答此題的關(guān)鍵.5、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當(dāng)∠5=∠B時(shí),AB∥CD,不合題意;B、當(dāng)∠1=∠2時(shí),AB∥CD,不合題意;C、當(dāng)∠B+∠BCD=180°時(shí),AB∥CD,不合題意;D、當(dāng)∠3=∠4時(shí),AD∥CB,符合題意;故選:D.【考點(diǎn)】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關(guān)鍵.6、D【解析】【詳解】解:如圖所示,根據(jù)圖中直線a、b被c所截形成的內(nèi)錯(cuò)角相等,可得依據(jù)為內(nèi)錯(cuò)角相等,兩直線平行.故選D.7、D【解析】【分析】根據(jù)反證法的證明步驟解答即可.【詳解】解:用反證法證明“三角形中必有一個(gè)內(nèi)角小于或等于60°”時(shí),應(yīng)先假設(shè)三角形中每一個(gè)內(nèi)角都不小于或等于60°,即每一個(gè)內(nèi)角都大于60°.故選:D.【考點(diǎn)】本題考查反證法,熟知反證法的證明步驟,正確得出原結(jié)論的反面是解答的關(guān)鍵.8、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點(diǎn)】本題主要考查三角形內(nèi)角和定理的應(yīng)用,利用了三角形內(nèi)角和為180度,此題難度不大.二、填空題1、76°【解析】【分析】根據(jù)平行線的性質(zhì)和三角形的內(nèi)角和解答即可.【詳解】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案為:76°.【考點(diǎn)】本題主要考查了平行線的性質(zhì)和三角形內(nèi)角和定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.2、55°【解析】【詳解】,,.3、①②③④【解析】【分析】①可推導(dǎo)∠ACB=∠ACE=60°,進(jìn)而可證全等;②先證△BFC≌△DGC,得到∠FBC=∠CDG,∠BFC=∠DFH,從而推導(dǎo)得出∠BCF=∠DHF=60°;③由∠A=60°,∠ACE=60°,可得∠A=∠ACE,即可得出ABCE;④利用△BCE的外角∠ECM和△ABC的外角∠ACM的關(guān)系,結(jié)合∠DEC=∠A可推導(dǎo)得出.【詳解】解:∵∠ACB=60°,∴∠ACM=180°?∠ACB=120°,∵CE平分∠ACM,∴∠ACE=∠MCE=∠ACM=60°,∴∠ACB=∠ACE.在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),故①正確;在△BCF和△DCG中,,∴△BCF≌△DCG(SAS).∴∠CBF=∠CDG.∵∠ECM=∠CBF+∠BEC=60°,∴∠CDG+∠CEB=60°.∵∠DCE+∠CDE+∠CED=180°,∠DCE=60°,∴∠CDE+∠CED=120°,∴∠HDE+∠HED=60°,∴∠DHF=∠HDE+∠HED=60°,故②正確;∵∠A=60°,∠ACE=60°,∴∠A=∠ACE,∴AB∥CE,故③正確;∵BE平分∠ABC,∴∠ABE=∠CBE.∵△BCF≌△DCG,∴∠CBE=∠CDG.∴∠CDG=∠ABE=∠CBE.∵△ABC≌△EDC,∴∠ABC=∠CDE,∴∠CDG=∠ABE=∠CBE=∠EDG.∵∠ECM=∠CBF+∠BEC=60°,∠DHF=∠EDG+∠DEB=60°,∴∠CBF+∠BEC=∠EDG+∠DEB,∴∠BEC=∠DEB,即EB平分∠DEC,故④正確;綜上,正確的結(jié)論有:①②③④.故答案為:①②③④.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理,角平分線的定義,三角形的內(nèi)角和定理以及平行線的判定定理,正確找出圖中的全等三角形是解題的關(guān)鍵.4、15°##15度【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進(jìn)行等量代換可得到∠F=∠E.【詳解】解:如圖:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理、角平分線、三角形外角性質(zhì),解題的關(guān)鍵是掌握三角形內(nèi)角和是180°.5、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判斷①正確;由CB平分∠ACF、AE∥CF及①的結(jié)論可判斷②正確;由前兩個(gè)的結(jié)論可對(duì)③作出判斷;由AE∥CF及AC∥BG、三角形外角的性質(zhì)可求得∠BDF,從而可對(duì)④作出判斷.【詳解】∵BD平分∠GBE∴∠EBD=∠GBD=∠GBE∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正確∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正確∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴與∠DBE互余的角共有4個(gè)故③錯(cuò)誤∵AC∥BG,∠A=α∴∠GBE=α∴∵AE∥CF∴∠BGD=180°-∠GBE=180°?α∴∠BDF=∠GBD+∠BGD=故④錯(cuò)誤即正確的結(jié)論有①②故答案為:①②【考點(diǎn)】本題考查了平行線的判定與性質(zhì),互余概念,垂直的定義,角平分線的性質(zhì)等知識(shí),掌握這些知識(shí)并正確運(yùn)用是關(guān)鍵.6、115【解析】【分析】由三角形外角的性質(zhì)即三角形的內(nèi)角和定理可求解∠DBC+∠ECB=260°,再利用角平分線的定義可求解∠FBC+∠FCB=130°,即可得∠GBC+∠GCB=65°,再利用三角形內(nèi)角和定理可求解.【詳解】解:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,∵∠ACB+∠A+∠ABC=180°,∴∠DBC+∠ECB=∠A+180°=80°+180°=260°,∵BF平分外角∠DBC,CF平分外角∠ECB,∴∠FBC=∠DBC,∠FCB=∠ECB,∴∠FBC+∠FCB=(∠DBC+∠ECB)=130°,∵BG平分∠CBF,CG平分∠BCF,∴∠GBC=∠FBC,∠GCB=∠FCB,∴∠GBC+∠GCB=(∠FBC+∠FCB)=65°,∴∠G=180°-(∠GBC-∠GCB)=180°-65°=115°.故答案為:115.【考點(diǎn)】本題主要考查三角形的內(nèi)角和定理,三角形外角的性質(zhì),角平分線的定義,求解∠FBC+∠FCB=130°是解題的關(guān)鍵.7、40【解析】【詳解】由折疊可得∠EDC=90°,∠BED=∠FED,由角平分線和三角形內(nèi)角和得∠DEC=70°,再利用三角形外角的性質(zhì)可得答案.【解答】解:由折疊可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折疊可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性質(zhì)可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案為:40.【考點(diǎn)】本題考查圖形的折疊,熟知折疊前后圖形的形狀和大小相等、得到∠BED=∠DEF并利用三角形內(nèi)角和是解本題的關(guān)鍵,屬于常見(jiàn)題型.三、解答題1、(1)見(jiàn)解析(2)35°【解析】【分析】(1)根據(jù),可得BM∥CN,從而得到∠CBM=∠BCN,再由,可得∠ABC=∠BCD,即可求證;(2)根據(jù)對(duì)頂角相等可得∠ABD=110°,再由三角形的內(nèi)角和定理可得∠BAD=35°,然后根據(jù)AB∥CD,即可求解.(1)解:∵,∴BM∥CN,∴∠CBM=∠BCN,∵,∴∠3+∠CBM=∠4+∠BCN,即∠ABC=∠BCD,∴AB∥CD;(2)解:∵∠ABD=∠EBF,,∴∠ABD=110°,∴∠BAD+∠BDA=70°,∵,∴∠BAD=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.【考點(diǎn)】本題主要考查了平行線的性質(zhì)和判定,對(duì)頂角的性質(zhì),三角形的內(nèi)角和定理,熟練掌握平行線的性質(zhì)和判定,對(duì)頂角的性質(zhì),三角形的內(nèi)角和定理是解題的關(guān)鍵.2、(1)3(2)①見(jiàn)解析;②45°或36°【解析】【分析】(1)由∠E=40°,∠F=35°可知∠D=105°,再根據(jù)n倍角三角形的定義可得結(jié)論.(2)①根據(jù)三角形內(nèi)角和定理及一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和,利用角的和差計(jì)算即可求得結(jié)果.②首先證明∠EAF=90°,分∠EAF=4∠E和∠F=4∠E兩種情形分別求解即可.(1)解:∵∠E=40°,∠F=35°,∴∠D=180°﹣40°﹣35°=105°,∴∠D=3∠F,∴△ABC為3倍角三角形,故答案為:3;(2)解:①∵AE平分∠BAO,OE平分∠BOQ,∴∠BAO=2∠EAQ,∠BOQ=2∠EOQ,由外角的性質(zhì)可得:∠BOQ=∠BAO+∠ABO,∠EOQ=∠EAQ+∠E,∴∠ABO=∠BOQ﹣∠BAO=2∠EOQ﹣2∠EAQ=2∠EAQ+2∠E﹣2∠EAQ=2∠E,∴∠ABO=2∠E.②∵AE平分∠BAO,AF平分∠OAG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∴當(dāng)∠EAF=4∠E時(shí),∠E=×90°=22.5°,當(dāng)∠F=4∠E時(shí),∠E=×90°=18°,∵∠ABO=2∠E,∴∠ABO=45°或36°.【考點(diǎn)】本題考查三角形的內(nèi)角和定理,角平分線的定義,角的和差計(jì)算等,讀懂新定義n倍角三角形的意義并注意分類討論是解決問(wèn)題的基礎(chǔ)和關(guān)鍵.3、見(jiàn)解析【解析】【分析】先根據(jù)平行線的性質(zhì)由AD∥BE得∠A=∠EBC,再根據(jù)平行線的判定由∠1=∠2得DE∥AC,則∠E=∠EBC,所以∠A=∠E.【詳解】證明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥AC,∴∠E=∠EBC,∴∠A=∠E.【考點(diǎn)】考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.4、,理由見(jiàn)解析【解析】【分析】首先判斷∠AED與∠ACB是一對(duì)同位角,然后根據(jù)已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標(biāo)記∠1,∠2,∠3,∠4.∵∠1+∠4=180°(平角定義),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(內(nèi)錯(cuò)角相等,兩直線平行).∴∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代換).∴DE∥BC(同位角相等,兩直線平行).∴∠AED=∠ACB(兩直線平行,同位角相等).【考點(diǎn)】本題重點(diǎn)考查平行線的性質(zhì)和判定,難度適中.5、垂直的定義;EF;兩直線平行,同位角相等;BC;兩直線平行,同位角相等.【解析】【分析】根據(jù)垂直求出∠BDC=∠EFC=90°,根據(jù)平行線的判定得出BD∥EF,根據(jù)平行線的性質(zhì)得出∠2=∠3,求出∠1=∠3,根據(jù)平行線的判定得出DG∥BC即可.【詳解】證明:∵BD⊥AC,EF⊥AC,∴∠BDC=∠EFC=90°,垂直的定義∴BD∥EF,∴∠2=∠3(兩直線平行,同位角相等),又∵∠1=∠2(已知)∴∠1=∠3(等量代換)∴DG∥BC,∴∠ADG=∠C.兩直線平行,同位角相等【考點(diǎn)】本題考查了平行線的性質(zhì)和判定,能熟練地運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵,注意:平行線的性質(zhì)有:①兩直線平行,同位角相等,②兩直線平行,內(nèi)錯(cuò)角相等,③兩直線平行,同旁內(nèi)角互補(bǔ),反之亦然.6、(1)見(jiàn)解析(2)BE+CD=BC,(3)①見(jiàn)解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長(zhǎng)OF到點(diǎn)M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過(guò)點(diǎn)O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+9
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醋酸的應(yīng)急預(yù)案(3篇)
- 幼兒園月度家長(zhǎng)會(huì)議記錄模板
- 門禁進(jìn)場(chǎng)施工方案(3篇)
- 隱形矯正活動(dòng)方案策劃(3篇)
- 露天燒烤應(yīng)急預(yù)案(3篇)
- 風(fēng)機(jī)安裝應(yīng)急預(yù)案(3篇)
- 高爐推移施工方案(3篇)
- 智能家居系統(tǒng)安裝技術(shù)指導(dǎo)方案
- 駕駛天車人員安全培訓(xùn)課件
- 駕駛員現(xiàn)場(chǎng)安全培訓(xùn)內(nèi)容課件
- 標(biāo)準(zhǔn)維修維護(hù)保養(yǎng)服務(wù)合同
- 專題08解題技巧專題:圓中輔助線的作法壓軸題三種模型全攻略(原卷版+解析)
- GB/T 4706.9-2024家用和類似用途電器的安全第9部分:剃須刀、電理發(fā)剪及類似器具的特殊要求
- 2019年急性腦梗死出血轉(zhuǎn)化專家共識(shí)解讀
- 電力工程有限公司管理制度制度范本
- 科研倫理與學(xué)術(shù)規(guī)范-課后作業(yè)答案
- 安全防范系統(tǒng)安裝維護(hù)員題庫(kù)
- mbd技術(shù)體系在航空制造中的應(yīng)用
- 苗木育苗方式
- 通信原理-脈沖編碼調(diào)制(PCM)
- 省直單位公費(fèi)醫(yī)療管理辦法實(shí)施細(xì)則
評(píng)論
0/150
提交評(píng)論