解析卷-湖南省沅江市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(解析版)_第1頁(yè)
解析卷-湖南省沅江市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(解析版)_第2頁(yè)
解析卷-湖南省沅江市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(解析版)_第3頁(yè)
解析卷-湖南省沅江市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(解析版)_第4頁(yè)
解析卷-湖南省沅江市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)試題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省沅江市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、下列各組數(shù):①3、4、5

②4、5、6

③2.5、6、6.5

④8、15、17,其中是勾股數(shù)的有(

)A.4組 B.3組 C.2組 D.1組2、如圖,在由邊長(zhǎng)為1的7個(gè)正六邊形組成的網(wǎng)格中,點(diǎn)A,B在格點(diǎn)上.若再選擇一個(gè)格點(diǎn)C,使△ABC是直角三角形,且每個(gè)直角三角形邊長(zhǎng)均大于1,則符合條件的格點(diǎn)C的個(gè)數(shù)是(

)A.2 B.4 C.5 D.63、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點(diǎn)F,設(shè)BC=a,AC=b,AB=c,則下列關(guān)系式中成立的是(

)A.a(chǎn)2+b2=5c2 B.a(chǎn)2+b2=4c2 C.a(chǎn)2+b2=3c2 D.a(chǎn)2+b2=2c24、如圖,正方體盒子的棱長(zhǎng)為2,M為BC的中點(diǎn),則一只螞蟻從A點(diǎn)沿盒子的表面爬行到M點(diǎn)的最短距離為(

)A. B.C. D.5、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,那么小巷的寬度為(

)A.0.7米 B.1.5米 C.2.2米 D.2.4米6、如圖,△ABC中,,以其三邊分別向外側(cè)作正方形,然后將整個(gè)圖形放置于如圖所示的長(zhǎng)方形中,若要求圖中兩個(gè)陰影部分面積之和,則只需知道(

)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積7、如圖,△OAB的頂點(diǎn)O(0,0),頂點(diǎn)A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點(diǎn)A的坐標(biāo)是(

)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、勾股定理最早出現(xiàn)在商高的《周髀算經(jīng)》:“勾廣三,股修四,經(jīng)隅五”.觀察下列勾股數(shù):3,4,5;5,12,13;7,24,25;…,這類勾股數(shù)的特點(diǎn)是:勾為奇數(shù),弦與股相差為1,柏拉圖研究了勾為偶數(shù),弦與股相差為2的一類勾股數(shù),如:6,8,10;8,15,17;…,若此類勾股數(shù)的勾為2m(m≥3,m為正整數(shù)),則其弦是________(結(jié)果用含m的式子表示).2、如圖,在一次綜合實(shí)踐活動(dòng)中,小明將一張邊長(zhǎng)為10cm的正方形紙片ABCD,沿著BC邊上一點(diǎn)E與點(diǎn)A的連線折疊,點(diǎn)B'是點(diǎn)B的對(duì)應(yīng)點(diǎn),延長(zhǎng)EB'交DC于點(diǎn)G,B'G=cm,則△ECG的面積為_____cm2.3、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長(zhǎng)為_______4、圖①所示的正方體木塊棱長(zhǎng)為6cm,沿其相鄰三個(gè)面的對(duì)角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點(diǎn)A爬行到頂點(diǎn)B的最短距離為_____cm.5、如圖,點(diǎn)在正方形的邊上,若,,那么正方形的面積為_.6、無(wú)蓋圓柱形杯子的展開圖如圖所示.將一根長(zhǎng)為20cm的細(xì)木筷斜放在該杯子內(nèi),木筷露在杯子外面的部分至少有__________cm.7、如圖,在中,,,,現(xiàn)將沿進(jìn)行翻折,使點(diǎn)剛好落在上,則__________.8、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時(shí),梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動(dòng),將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,某海岸線MN的方向?yàn)楸逼珫|75°,甲,乙兩船分別向海島C運(yùn)送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.2、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過程.3、一架梯子長(zhǎng)13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個(gè)梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了7米到C,那么梯子的底端在水平方向滑動(dòng)了幾米?4、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長(zhǎng)度)?5、某海上有一小島,為了測(cè)量小島兩端A,B的距離,測(cè)量人員設(shè)計(jì)了一種測(cè)量方法,如圖,已知B是CD的中點(diǎn),E是BA延長(zhǎng)線上的一點(diǎn),且∠CED=90°,測(cè)得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過點(diǎn)C作CF⊥AB交AB的延長(zhǎng)線于點(diǎn)F,求值.6、如圖,將RtABC紙片沿AD折疊,使直角頂點(diǎn)C與AB邊上的點(diǎn)E重合,若AB=10cm,AC=6cm,求線段BD的長(zhǎng).7、如圖,在4×4的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1.(1)請(qǐng)?jiān)谒o網(wǎng)格中畫一個(gè)邊長(zhǎng)分別為,,的三角形;(2)此三角形的面積是.-參考答案-一、單選題1、C【解析】【詳解】解:∵32+42=52,①符合勾股數(shù)的定義;∵42+52≠62,②不符合勾股數(shù)的定義;∵2.5和6.5不是正整數(shù),③不符合勾股數(shù)的定義;∵82+152=172,④符合勾股數(shù)的定義,是勾股數(shù)的有:①④,共2組,故選:C.2、D【解析】【分析】分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°時(shí),分別畫出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當(dāng)∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點(diǎn)C的個(gè)數(shù)是6個(gè)故選:D.【考點(diǎn)】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對(duì)的圓周角是90°等知識(shí),是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.3、A【解析】【詳解】設(shè)EF=x,DF=y(tǒng),根據(jù)三角形重心的性質(zhì)得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關(guān)系.【解答】解:設(shè)EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點(diǎn)F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點(diǎn)評(píng)】本題考查了三角形的重心:重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1.也考查了勾股定理.4、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時(shí)距離最短;∵正方體盒子棱長(zhǎng)為2,M為BC的中點(diǎn),∴,∴,故選:B.【考點(diǎn)】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點(diǎn)之間線段最短等知識(shí),解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.5、C【解析】【分析】在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點(diǎn)】本題考查勾股定理的運(yùn)用,利用梯子長(zhǎng)度不變找到斜邊是關(guān)鍵.6、D【解析】【分析】如圖所示,過點(diǎn)C作CN⊥AB于N,延長(zhǎng)AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點(diǎn)C作CN⊥AB于N,延長(zhǎng)AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠正確作出輔助線,構(gòu)造全等三角形.7、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點(diǎn)A的坐標(biāo)是(4,3),故選:D.【考點(diǎn)】本題考查了坐標(biāo)與圖形,全等三角形的判定和性質(zhì),勾股定理,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.二、填空題1、m2+1【解析】【分析】2m為偶數(shù),設(shè)其股是a,則弦為a+2,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】∵2m為偶數(shù),∴設(shè)其股是a,則弦為a+2,根據(jù)勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長(zhǎng)為m2+1,故答案為:m2+1.【考點(diǎn)】本題考查了勾股數(shù),勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.2、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識(shí)找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.3、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長(zhǎng),進(jìn)而可得出BD的長(zhǎng),根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長(zhǎng).【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.4、(3+3).【解析】【分析】要求螞蟻爬行的最短距離,需將圖②的幾何體表面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.【詳解】如圖所示:△BCD是等腰直角三角形,△ACD是等邊三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴從頂點(diǎn)A爬行到頂點(diǎn)B的最短距離為(3+3)cm.故答案為(3+3).【考點(diǎn)】本題考查了平面展開-最短路徑問題,關(guān)鍵是把圖②的幾何體表面展開成平面圖形,根據(jù)等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)解題.5、.【解析】【分析】根據(jù)勾股定理求出BC,根據(jù)正方形的面積公式計(jì)算即可.【詳解】解:由勾股定理得,,正方形的面積,故答案為.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.6、5【解析】【分析】根據(jù)題意直接利用勾股定理得出杯子內(nèi)的筷子長(zhǎng)度,進(jìn)而得出答案.【詳解】解:由題意可得:杯子內(nèi)的筷子長(zhǎng)度為:=15,則木筷露在杯子外面的部分至少有:20?15=5(cm).故答案為5.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,正確得出杯子內(nèi)筷子的長(zhǎng)是解決問題的關(guān)鍵.7、【解析】【詳解】解:設(shè)CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.58、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長(zhǎng),同理可得出AB的長(zhǎng),進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時(shí),勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.三、解答題1、【解析】【分析】過點(diǎn)C作CD⊥AM垂足為D,設(shè)CD=x,根據(jù)直角三角形的性質(zhì)求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,進(jìn)而求得AC的長(zhǎng).【詳解】解:過點(diǎn)C作CD⊥AM垂足為D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,設(shè)CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海島C的距離是海里.【考點(diǎn)】本題主要考查了直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),掌握直角三角形的邊角關(guān)系是正確解答的前提,作垂線構(gòu)造直角三角形是解決問題的關(guān)鍵.2、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設(shè)BD=x,則.

在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,

解之得:.

∴.

∴.3、(1)12米;(2)7米【解析】【分析】(1)由題意易得AB=CD=13米,OB=5米,然后根據(jù)勾股定理可求解;(2)由題意得CO=5米,然后根據(jù)勾股定理可得求解.【詳解】解:(1)由題意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:這個(gè)梯子的頂端距地面有12米高;(2)由題意得,AC=7米,由(1)得AO=12米,∴CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=132-52=169-25=144,解得OD=12米∴BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑動(dòng)了7米.【考點(diǎn)】本題主要考查勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.4、這棵樹在離地面6米處被折斷【解析】【分析】設(shè),利用勾股定理列方程求解即可.【詳解】解:設(shè),∵在中,,∴,∴.答:這棵樹在離地面6米處被折斷【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解答本題的關(guān)鍵.直角三角形兩條直角邊的平方和等于斜邊的平方.當(dāng)題目中出現(xiàn)直角三

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論