版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學上冊《全等三角形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖是用直尺和圓規(guī)作一個角等于已知角的示意圖,說明的依據是(
)A. B. C. D.2、如圖,銳角△ABC的兩條高BD、CE相交于點O,且CE=BD,若∠CBD=20°,則∠A的度數為()A.20° B.40° C.60° D.70°3、下列各組的兩個圖形屬于全等圖形的是(
)A. B. C. D.4、如圖,把沿線段折疊,使點落在點處;若,,,則的度數為(
)A. B. C. D.5、如圖,△ABC的三邊AB,BC,CA長分別是20,30,40,其三條角平分線將△ABC分為三個三角形,則S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,已知∠1=∠2、AD=AB,若再增加一個條件不一定能使結論成立,則這個條件是_____.2、要測量河兩岸相對的兩點A,B間的距離(AB垂直于河岸BF),先在BF上取兩點C,D,使CD=CB,再作出BF的垂線DE,且使A,C,E三點在同一條直線上,如圖,可以得△EDC≌△ABC,所以ED=AB.因此測得ED的長就是AB的長.判定△EDC≌△ABC的理由是____________.3、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.4、如圖,在和中,點B、E、C、F在同一條直線上,且,,請你再添加一個適當的條件:________________,使.5、如圖,給出下列結論:①;②;③;④.其中正確的有_______(填寫答案序號).三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,BD是的平分線,于點E,點F在BC上,連接DF,且.(1)求證:;(2)若,,求AB的長.2、如圖,已知,,,求證:.3、如圖,已知,.求證:.4、如圖,在△ABC中,AB⊥AC,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于點E;(1)若B、C在DE的同側(如圖1所示)求證:DE=BD+CE;(2)若B、C在DE的兩側(如圖2所示),其他條件不變,則DE,BD,CE具有怎樣的等量關系?寫出等量關系,不需證明.5、如圖,∠A=∠D=90°,AC=DB,AC、DB相交于點O.求證:OB=OC.-參考答案-一、單選題1、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據SSS可判定△COD≌△C'O'D'.【詳解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據SSS可判定△COD≌△C'O'D',故選B.【考點】本題主要考查了尺規(guī)作圖—作已知角相等的角,解題的關鍵在于能夠熟練掌握全等三角形的判定條件.2、B【解析】【分析】由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可證Rt△BEC≌Rt△CDB(HL),得出∠BCD=∠CBE=70°即可.【詳解】解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故選:B.【考點】本題考查三角形高的定義,三角形全等判定與性質,三角形內角和公式,掌握三角形高的定義,三角形全等判定與性質,三角形內角和公式是解題關鍵.3、D【解析】【分析】根據全等圖形的定義,逐一判斷選項,即可.【詳解】解:A、兩個圖形不能完全重合,不是全等圖形,不符合題意,B.兩個圖形不能完全重合,不是全等圖形,符合題意,C.兩個圖形不能完全重合,不是全等圖形,不符合題意,D.兩個圖形能完全重合,是全等圖形,不符合題意,故選D.【考點】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個圖形,是全等圖形”是解題的關鍵.4、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質及三角形內角和定理、平行線的性質;解題的關鍵是,理解折疊就是得到全等的三角形,根據全等三角形的對應角相等就可以解決.5、C【解析】【分析】過點作于點,作于點,作于點,先根據角平分線的性質可得,再根據三角形的面積公式即可得.【詳解】解:如圖,過點作于點,作于點,作于點,是的三條角平分線,,,故選:C.【考點】本題考查了角平分線的性質,熟練掌握角平分線的性質是解題關鍵.二、填空題1、DE=BC【解析】【分析】根據題目中的條件可以得到,再增加條件則不一定成立,從而可以解答本題.【詳解】增加的條件為理由:∵∴∴∵∴不一定成立故答案為:.【考點】本題考查了三角形全等的判定定理,熟記并靈活運用各種判定方法是解題關鍵.2、ASA【解析】【分析】由已知可以得到∠ABC=∠BDE=90°,又CD=BC,∠ACB=∠DCE,由此根據角邊角即可判定△EDC≌△ABC.【詳解】∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故答案為ASA【考點】本題考查了全等三角形的判定方法;需注意根據垂直定義得到的條件,以及隱含的對頂角相等,觀察圖形,找到隱含條件并熟練掌握全等三角形的判定定理是解題關鍵.3、4:3【解析】【分析】根據角平分線的性質,可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對應邊之比.【詳解】∵AD是△ABC的角平分線,∴設△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.4、或或【解析】【分析】根據全等三角形的判定即可求解.【詳解】解:①根據定理,即,可得;②根據定理,即,可得;③若,則,則根據定理,即可得;綜上所述,添加一個適當的條件:或或,故答案為:或或.(答案不唯一)【考點】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解題的關鍵.5、①③④【解析】【分析】利用AAS可證明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差關系可得∠EAM=∠FAN,可得③正確,利用ASA可證明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正確;根據線段的和差關系可得CM=BN,利用AAS可證明△CDM≌△BDN,可得CD=DB,可得②錯誤;利用ASA可證明△ACN≌△ABM,可得④正確;綜上即可得答案.【詳解】在△ABE和△ACF中,,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正確,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正確,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,,∴CD=DB,故②錯誤,在△CAN和△ABM中,,∴△ACN≌△ABM,故④正確,綜上所述:正確的結論有①③④,故答案為:①③④【考點】本題考查全等三角形的判定與性質,判定兩個三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形確定,當利用SAS證明時,角必須是兩邊的夾角;熟練掌握全等三角形的判定定理是解題關鍵.三、解答題1、(1)證明見解析(2)10【解析】【分析】(1)由角平分線的性質可得,證明,進而結論得證;(2)證明,可得,根據計算求解即可.(1)證明:(1)∵,∴,又∵BD是的平分線,,∴,,在和中,∵,∴,∴.(2)解:由(1)可得,∴,∵,∴,∴,∵BD是的平分線,∴,在和中,∵,∴,∴,∴,∴AB的長為10.【考點】本題考查了角平分線的性質,三角形全等的判定與性質.解題的關鍵在于熟練掌握角平分線的性質并證明三角形全等.2、證明見解析.【解析】【分析】利用SSS可證明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根據三角形外角的性質即可得∠3=∠BAD+∠ABD,即可得結論.【詳解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考點】本題考查全等三角形的判定與性質及三角形外角性質,熟練掌握判定定理及外角性質是解題關鍵.3、見詳解.【解析】【分析】根據SSS定理推出△ADB≌△BCA即可證明.【詳解】證明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴.【考點】本題考查了全等三角形的性質和判定,能正確進行推理證明全等是解此題的關鍵.4、(1)見解析(2)DE=CE-BD【解析】【分析】(1)根據AAS證明△ADB≌△CEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出結論;(2)由條件可以得出∠ADB=∠CEA=90°,∠BAD=∠ACE,再由AB=AC就可以得出△ADB≌△CEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD.(1)∵AB⊥AC,BD⊥DE,CE⊥DE∴∠BAC=90°,∠ADB=∠AEC=90°∴∠ACE+∠CAE=90°,∠BAD+∠CAE=90°,∴∠BAD=∠ACE,在△ADC與△BEC中,∠ADB=∠AEC=90°,∠BAD=∠ACE,AB=AC,∴△ADB≌△CEA(AAS),∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)DE=CE-BD理由:∵BD⊥AD,CE⊥AD,∴∠ADB=∠CEA=90°.∵AB⊥AC,∴∴∠BAD+∠CAE=90°.∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE.在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE.∵AD=AE+ED,∴DE=AD-AE=CE-BD.【考點】本題考查了等腰直角三角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標志物在藥物臨床試驗中的應用案例
- 生物制品降解機制與穩(wěn)定性試驗關聯(lián)研究
- 生物制劑在難治性兒童哮喘中的選擇
- 生物制劑臨床試驗中受試者依從性提升方案
- 深度解析(2026)《GBT 20564.3-2017汽車用高強度冷連軋鋼板及鋼帶 第3部分 高強度無間隙原子鋼》
- 油氣管網戰(zhàn)略規(guī)劃部總經理管理能力測試題含答案
- 教育行業(yè)教育咨詢師面試題
- 快遞員服務面試題及答案
- 深度解析(2026)《GBT 19369-2003草皮生產技術規(guī)程》
- 深度解析(2026)《GBT 19356-2003熱噴涂 粉末 成分和供貨技術條件》
- 2025年社保常識測試題庫及解答
- 2025年鐵路運輸合同書
- 消防設施培訓課件
- 疤痕子宮破裂護理查房
- 腎內科常見并發(fā)癥的觀察與應急處理
- 《馬克思主義與社會科學方法論題庫》復習資料
- DB33∕T 2320-2021 工業(yè)集聚區(qū)社區(qū)化管理和服務規(guī)范
- 學堂在線 人工智能原理 章節(jié)測試答案
- 地鐵資料城市軌道交通設備系統(tǒng)控制中心
- 企業(yè)數字化轉型發(fā)言稿
- GB/T 2878.2-2011液壓傳動連接帶米制螺紋和O形圈密封的油口和螺柱端第2部分:重型螺柱端(S系列)
評論
0/150
提交評論