考點攻克人教版8年級數(shù)學下冊《平行四邊形》綜合測試練習題(含答案詳解)_第1頁
考點攻克人教版8年級數(shù)學下冊《平行四邊形》綜合測試練習題(含答案詳解)_第2頁
考點攻克人教版8年級數(shù)學下冊《平行四邊形》綜合測試練習題(含答案詳解)_第3頁
考點攻克人教版8年級數(shù)學下冊《平行四邊形》綜合測試練習題(含答案詳解)_第4頁
考點攻克人教版8年級數(shù)學下冊《平行四邊形》綜合測試練習題(含答案詳解)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.2、下列命題正確的是()A.對角線相等的四邊形是平行四邊形 B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直且相等的四邊形是正方形3、在□ABCD中,AC=24,BD=38,AB=m,則m的取值范圍是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<124、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對5、如圖所示,在ABCD中,對角線AC,BD相交于點O,過點O的直線EF分別交AD于點E,BC于點F,,則ABCD的面積為(

)A.24 B.32 C.40 D.486、如圖,下列條件中,能使平行四邊形ABCD成為菱形的是()A. B. C. D.7、平行四邊形中,,則的度數(shù)是()A. B. C. D.8、如圖所示,AB=CD,AD=BC,則圖中的全等三角形共有()A.1對 B.2對 C.3對 D.4對9、如圖,在正方形有中,E是AB上的動點,(不與A、B重合),連結DE,點A關于DE的對稱點為F,連結EF并延長交BC于點G,連接DG,過點E作⊥DE交DG的延長線于點H,連接,那么的值為()A.1 B. C. D.210、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在平面直角坐標系中,O是菱形ABCD對角線BD的中點,AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點O旋轉,使點D落在x軸上,則旋轉后點C的對應點的坐標是_____________.2、如圖,四邊形和四邊形都是邊長為4的正方形,點是正方形對角線的交點,正方形繞點旋轉過程中分別交,于點,,則四邊形的面積為______.3、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________4、如圖,在正方形ABCD中,點M,N為CD,BC上的點,且DM=CN,AM與DN交于點P,連接AN,點Q為AN中點,連接PQ,若AB=10,DM=4,則PQ的長為__________________.5、如圖,在長方形ABCD中,.在DC上找一點E,沿直線AE把折疊,使D點恰好落在BC上,設這一點為F,若的面積是54,則的面積=______________.6、正方形ABCD的邊長是8cm,點M在BC邊上,且MC=2cm,P是正方形邊上的一個動點,連接PB交AM于點N,當PB=AM時,PN的長是_____.7、如圖,每個小正方形的邊長都為1,△ABC是格點三角形,點D為AC的中點,則線段BD的長為_____.8、已知正方形ABCD的一條對角線長為2,則它的面積是______.9、如圖中,分別是由個、個、個正方形連接成的圖形,在圖中,;在圖中,;通過以上計算,請寫出圖中______(用含的式子表示)10、如圖,將n個邊長都為1的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為_____.三、解答題(5小題,每小題6分,共計30分)1、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側構造等邊△AEF.連結CE,N為CE的中點.

(1)如圖1,EF與AC交于點G,①連結NG,求線段NG的長;②連結ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉,旋轉角為α.M為線段EF的中點.連結DN、MN.當30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結論.2、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).3、如圖,正方形網格中的每個小正方形邊長都是1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形.(1)在圖1中,畫一個三邊長都是有理數(shù)的直角三角形;(2)在圖2中,畫一個以BC為斜邊的直角三角形,使它們的三邊長都是無理數(shù)且都不相等;(3)在圖3中,畫一個正方形,使它的面積是10.4、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點F,在線段上截取,使.(2)連接,求證:四邊形是菱形.5、如圖,在?ABCD中,對角線AC的垂直平分線EF交AD于點F,交BC于點E,交AC于點O.求證:四邊形AECF是菱形.(小海的證明過程)證明:∵EF是AC的垂直平分線,∴OA=OC,OE=OF,EF⊥AC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴四邊形AECF是菱形.(老師評析)小海利用對角線互相平分證明了四邊形AECF是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.(挑錯改錯)(1)請你幫小海找出錯誤的原因;(2)請你根據(jù)小海的思路寫出此題正確的證明過程.

-參考答案-一、單選題1、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質,可得斜邊為2,然后利用兩直角邊之間的關系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,巧妙求出AC?BC的值是解此題的關鍵,值得學習應用.2、C【解析】【分析】根據(jù)平行四邊形、矩形、菱形以及正方形的判定方法,對選項逐個判斷即可.【詳解】解:A、對角線互相平分的四邊形是平行四邊形,選項錯誤,不符合題意;B、對角線相等平行四邊形是矩形,選項錯誤,不符合題意;C、對角線互相垂直的平行四邊形是菱形,選項正確,符合題意;D、對角線互相垂直且相等的平行四邊形是正方形,選項錯誤,不符合題意;故選C【點睛】此題考查了平行四邊形、矩形、菱形以及正方形的判定,掌握它們的判定方法是解題的關鍵.3、C【解析】【分析】作出平行四邊形,根據(jù)平行四邊形的性質可得,,然后在中,利用三角形三邊的關系即可確定m的取值范圍.【詳解】解:如圖所示:∵四邊形ABCD為平行四邊形,∴,,在中,,∴,即,故選:C.【點睛】題目主要考查平行四邊形的性質及三角形三邊的關系,熟練掌握平行四邊形的性質及三角形三邊關系是解題關鍵.4、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關鍵在于能夠熟練掌握三角形中位線定理.5、B【解析】【分析】先根據(jù)平行四邊形的性質可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質可得,從而可得,然后根據(jù)平行四邊形的性質即可得.【詳解】解:∵四邊形是平行四邊形,,,在和中,∵,,,,則的面積為,故選:B.【點睛】本題考查了平行四邊形的性質、三角形全等的判定定理與性質等知識點,熟練掌握平行四邊形的性質是解題關鍵.6、C【解析】【分析】根據(jù)菱形的性質逐個進行證明,再進行判斷即可.【詳解】解:A、?ABCD中,本來就有AB=CD,故本選項錯誤;B、?ABCD中本來就有AD=BC,故本選項錯誤;C、?ABCD中,AB=BC,可利用鄰邊相等的平行四邊形是菱形判定?ABCD是菱形,故本選項正確;D、?ABCD中,AC=BD,根據(jù)對角線相等的平行四邊形是矩形,即可判定?ABCD是矩形,而不能判定?ABCD是菱形,故本選項錯誤.故選:C.【點睛】本題考查了平行四邊形的性質,菱形的判定的應用,注意:菱形的判定定理有:①有一組鄰邊相等的平行四邊形是菱形,②四條邊都相等的四邊形是菱形,③對角線互相垂直的平行四邊形是菱形.7、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是掌握平行四邊形的性質.8、D【解析】【分析】根據(jù)平行四邊形的判定與性質,求解即可.【詳解】解:∵AB=CD,AD=BC∴四邊形為平行四邊形∴,,,∴、又∵,∴、∴圖中的全等三角形共有4對故選:D【點睛】此題考查了平行四邊形的判定與性質,全等三角形的判定與性質,解題的關鍵是掌握平行四邊形的判定與性質.9、B【解析】【分析】作輔助線,構建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說明△BNH是等腰直角三角形,可得結論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點A關于直線DE的對稱點為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點睛】本題考查了正方形的性質,全等三角形的判定定理和性質定理,等知識,解決本題的關鍵是作出輔助線,利用正方形的性質得到相等的邊和相等的角,證明三角形全等.10、C【解析】【分析】根據(jù)平行四邊形的性質,可得AB=CD,BC=AD,然后設,可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設,∵的周長為32cm,∴,即,解得:,∴.故選:C【點睛】本題主要考查了平行四邊形的性質,熟練掌握平行四邊形的對邊相等是解題的關鍵.二、填空題1、或##或【解析】【分析】分當D落在x軸正半軸時和當D落在x軸負半軸時,兩種情況討論求解即可.【詳解】解:如圖1所示,當D落在x軸正半軸時,∵O是菱形ABCD對角線BD的中點,∴AO⊥DO,∴當D落在x軸正半軸時,A點在y軸正半軸,∴同理可得A、B、C三點均在坐標軸上,且點C在y軸負半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點C的坐標為(0,);如圖2所示,當D落在x軸負半軸時,同理可得,∴點C的坐標為(0,);∴綜上所述,點C的坐標為(0,)或(0,),故答案為:(0,)或(0,).【點睛】本題主要考查了菱形的性質,坐標與圖形,含30度角的直角三角形的性質,勾股定理,熟練掌握菱形的性質是解題的關鍵.2、4【解析】【分析】過點O作OG⊥AB,垂足為G,過點O作OH⊥BC,垂足為H,把四邊形的面積轉化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過點O作OG⊥AB,垂足為G,過點O作OH⊥BC,垂足為H,∵四邊形ABCD的對角線交點為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點睛】本題考查了正方形的性質,三角形的全等與性質,補形法計算面積,熟練掌握正方形的性質,靈活運用補形法計算面積是解題的關鍵.3、【解析】【分析】由折疊的性質可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質,勾股定理以及直角三角形的性質,解題的關鍵是靈活利用相關性質進行求解.4、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點睛】本題考查正方形的性質,全等三角形的判定和性質,直角三角形斜邊上的中線,勾股定理等知識,解題的關鍵是熟練掌握正方形的性質.5、6【解析】【分析】根據(jù)三角形的面積求出BF,利用勾股定理列式求出AF,再根據(jù)翻折變換的性質可得AD=AF,然后求出CF,設DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面積公式解答即可.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=9,BC=AD∵?AB?BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.設DE=x,則CE=9-x,EF=DE=x.則x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面積=×4×3=6.【點睛】本題考查了翻折變換的性質,矩形的性質,三角形的面積,勾股定理,熟記各性質并利用勾股定理列出方程是解題的關鍵.6、5cm或5.2cm【解析】【分析】當點P在BC上,AM>BP,當點P在AB上,AM>BP,當點P在CD上,如圖,根據(jù)PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據(jù)勾股定理可求AM=,根據(jù)三角形面積可求,可求PN=BP-BN;當點P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據(jù)AM=BP=10cm,可求PN=cm,【詳解】解:當點P在BC上,AM>BP,當點P在AB上,AM>BP,不合題意,舍去;當點P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當點P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長為5cm或5.2cm.故答案為5cm或5.2cm.【點睛】本題考查正方形的性質,三角形全等判定與性質,勾股定理,等腰三角形判定與性質,分類討論思想,掌握正方形的性質,三角形全等判定與性質,勾股定理,等腰三角形判定與性質,分類討論思想是解題關鍵.7、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點D為AC的中點,∴BD為AC邊上的中線,∴BD=AC,故答案為:【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,勾股定理,勾股定理逆定理的應用,判斷出△ABC是直角三角形是解題的關鍵.8、6【解析】【分析】正方形的面積:邊長的平方或兩條對角線之積的一半,根據(jù)公式直接計算即可.【詳解】解:正方形ABCD的一條對角線長為2,故答案為:【點睛】本題考查的是正方形的性質,掌握“正方形的面積等于兩條對角線之積的一半”是解題的關鍵.9、90n【解析】【分析】連接各小正方形的對角線,由圖1中四邊形內角和定理化簡可得:;由圖2中四邊形內角和定理化簡可得:;結合圖形即可發(fā)現(xiàn)規(guī)律,求得結果.【詳解】解:連接各小正方形的對角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點睛】題目主要考查根據(jù)規(guī)律列出相應代數(shù)式,正方形性質等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關鍵.10、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:由題意可得一個陰影部分面積等于正方形面積的,即是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點睛】本題考查了正方形的性質,解題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.三、解答題1、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據(jù)等邊三角形的性質、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質可得,從而可得,然后根據(jù)四邊形的內角和即可得;(2)連接,先證出,根據(jù)全等三角形的性質可得,從而可得,再根據(jù)三角形中位線定理可得,然后根據(jù)三角形的外角性質、角的和差即可得出結論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點為的中點,∴;②如圖,連接,由(1)①知,,∵,點為的中點,∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點為的中點,點為的中點,∴,∴,∵,即點是的中點,∴,∴,∵,∴,∴的大小為定值.【點睛】本題考查了等邊三角形的性質、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理等知識點,較難的是題(2),通過作輔助線,構造全等三角形和利用到三角形中位線定理是解題關鍵.2、(1)見解析;(2)90°【分析】(1)利用正方形的性質得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結論;

(2)利用(1)的結論得出∠ADF=∠BAE,進而求出∠BAE+∠DFA=90°,最后用三角形的內角和定理即可得出結論.【詳解】(1)證明:∵四

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論