版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年人教版七7年級下冊數(shù)學期末解答題復(fù)習一、解答題1.動手試一試,如圖1,紙上有10個邊長為1的小正方形組成的圖形紙.我們可以按圖2的虛線將它剪開后,重新拼成一個大正方形.(1)基礎(chǔ)鞏固:拼成的大正方形的面積為______,邊長為______;(2)知識運用:如圖3所示,將圖2水平放置在數(shù)軸上,使得頂點B與數(shù)軸上的重合.以點B為圓心,邊為半徑畫圓弧,交數(shù)軸于點E,則點E表示的數(shù)是______;(3)變式拓展:①如圖4,給定的方格紙(每個小正方形邊長為1),你能從中剪出一個面積為13的正方形嗎?若能,請在圖中畫出示意圖;②請你利用①中圖形在數(shù)軸上用直尺和圓規(guī)表示面積為13的正方形邊長所表示的數(shù).2.如圖,用兩個面積為的小正方形拼成一個大的正方形.(1)則大正方形的邊長是___________;(2)若沿著大正方形邊的方向裁出一個長方形,能否使裁出的長方形紙片的長寬之比為5:4,且面積為?3.有一塊面積為100cm2的正方形紙片.(1)該正方形紙片的邊長為cm(直接寫出結(jié)果);(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?4.如圖,用兩個邊長為10的小正方形拼成一個大的正方形.(1)求大正方形的邊長?(2)若沿此大正方形邊的方向出一個長方形,能否使裁出的長方形的長寬之比為3:2,且面積為480cm2?5.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設(shè)計一種可行的裁剪方案;(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設(shè)計一種裁剪方案,若不能,請簡要說明理由.二、解答題6.已知,AB∥CD,點E為射線FG上一點.(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當點E在FG延長線上時,此時CD與AE交于點H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關(guān)系,請說明你的結(jié)論;(3)如圖3,當點E在FG延長線上時,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).7.如圖1,點在直線、之間,且.(1)求證:;(2)若點是直線上的一點,且,平分交直線于點,若,求的度數(shù);(3)如圖3,點是直線、外一點,且滿足,,與交于點.已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).8.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設(shè)存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關(guān)系.9.已知:AB∥CD,截線MN分別交AB、CD于點M、N.(1)如圖①,點B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長線于點F;請寫出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,當點P在射線NT上運動時,∠DCP與∠BMT的平分線交于點Q,則∠Q與∠CPM的比值為(直接寫出答案).10.問題情境:(1)如圖1,,,.求度數(shù).小穎同學的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側(cè)運動時(點與點、、三點不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.三、解答題11.已知,直角的邊與直線a分別相交于O、G兩點,與直線b分別交于E,F(xiàn)點,且.(1)將直角如圖1位置擺放,如果,則________;(2)將直角如圖2位置擺放,N為上一點,,請寫出與之間的等量關(guān)系,并說明理由;(3)將直角如圖3位置擺放,若,延長交直線b于點Q,點P是射線上一動點,探究與的數(shù)量關(guān)系,請直接寫出結(jié)論.12.如圖1所示:點E為BC上一點,∠A=∠D,AB∥CD(1)直接寫出∠ACB與∠BED的數(shù)量關(guān)系;(2)如圖2,AB∥CD,BG平分∠ABE,BG的反向延長線與∠EDF的平分線交于H點,若∠DEB比∠GHD大60°,求∠DEB的度數(shù);(3)保持(2)中所求的∠DEB的度數(shù)不變,如圖3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不發(fā)生變化,請求它的度數(shù),若發(fā)生改變,請說明理由.(本題中的角均為大于0°且小于180°的角).13.已知:直線∥,A為直線上的一個定點,過點A的直線交于點B,點C在線段BA的延長線上.D,E為直線上的兩個動點,點D在點E的左側(cè),連接AD,AE,滿足∠AED=∠DAE.點M在上,且在點B的左側(cè).(1)如圖1,若∠BAD=25°,∠AED=50°,直接寫出ABM的度數(shù);(2)射線AF為∠CAD的角平分線.①如圖2,當點D在點B右側(cè)時,用等式表示∠EAF與∠ABD之間的數(shù)量關(guān)系,并證明;②當點D與點B不重合,且∠ABM+∠EAF=150°時,直接寫出∠EAF的度數(shù).14.如圖,,平分,設(shè)為,點E是射線上的一個動點.(1)若時,且,求的度數(shù);(2)若點E運動到上方,且滿足,,求的值;(3)若,求的度數(shù)(用含n和的代數(shù)式表示).15.綜合與探究綜合與實踐課上,同學們以“一個含角的直角三角尺和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.實踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結(jié)論的基礎(chǔ)上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請寫出與的數(shù)量關(guān)系并說明理由.四、解答題16.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關(guān)系,并證明你的結(jié)論.17.小明在學習過程中,對教材中的一個有趣問題做如下探究:(習題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點.求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點,使得,的平分線交于點.的外角的平分線所在直線與的延長線交于點.直接寫出與的數(shù)量關(guān)系.18.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點同時從點O出發(fā),點A沿直線m向左運動,點B沿直線n向上運動.(1)若∠BAO和∠ABO的平分線相交于點Q,在點A,B的運動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補角的平分線,BP是∠ABO的鄰補角的平分線,AP、BP相交于點P,AQ的延長線交PB的延長線于點C,在點A,B的運動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數(shù);若發(fā)生變化,請說明理由.19.如圖1,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細觀察,在圖2中有個以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.20.(1)如圖1所示,△ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;①若∠B=90°則∠F=;②若∠B=a,求∠F的度數(shù)(用a表示);(2)如圖2所示,若點G是CB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運動,∠F+∠H的值是否變化?若變化,請說明理由;若不變,請求出其值.【參考答案】一、解答題1.(1)10,;(2);(3)見解析;(4)見解析【分析】(1)易得10個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長;(2)根據(jù)大正方形的邊長結(jié)合實解析:(1)10,;(2);(3)見解析;(4)見解析【分析】(1)易得10個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長;(2)根據(jù)大正方形的邊長結(jié)合實數(shù)與數(shù)軸的關(guān)系可得結(jié)果;(3)以2×3的長方形的對角線為邊長即可畫出圖形;(4)得到①中正方形的邊長,再利用實數(shù)與數(shù)軸的關(guān)系可畫出圖形.【詳解】解:(1)∵圖1中有10個小正方形,∴面積為10,邊長AD為;(2)∵BC=,點B表示的數(shù)為-1,∴BE=,∴點E表示的數(shù)為;(3)①如圖所示:②∵正方形面積為13,∴邊長為,如圖,點E表示面積為13的正方形邊長.【點睛】本題考查了圖形的剪拼,正方形的面積,算術(shù)平方根,實數(shù)與數(shù)軸,巧妙地根據(jù)網(wǎng)格的特點畫出正方形是解此題的關(guān)鍵.2.(1);(2)不能剪出長寬之比為5:4,且面積為的大長方形,理由詳見解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長;(2)設(shè)長方形紙片的長為,寬為,根據(jù)解析:(1);(2)不能剪出長寬之比為5:4,且面積為的大長方形,理由詳見解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長;(2)設(shè)長方形紙片的長為,寬為,根據(jù)面積列得,求出,得到,由此判斷不能裁出符合條件的大正方形.【詳解】(1)∵用兩個面積為的小正方形拼成一個大的正方形,∴大正方形的面積為400,∴大正方形的邊長為故答案為:20cm;(2)設(shè)長方形紙片的長為,寬為,,解得:,,答:不能剪出長寬之比為5:4,且面積為的大長方形.【點睛】此題考查利用算術(shù)平方根解決實際問題,利用平方根解方程,正確理解題意是解題的關(guān)鍵.3.(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術(shù)平方根的定義直接得出;(2)直接利用算術(shù)平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據(jù)算解析:(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術(shù)平方根的定義直接得出;(2)直接利用算術(shù)平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據(jù)算術(shù)平方根定義可得,該正方形紙片的邊長為10cm;故答案為:10;(2)∵長方形紙片的長寬之比為4:3,∴設(shè)長方形紙片的長為4xcm,則寬為3xcm,則4x?3x=90,∴12x2=90,∴x2=,解得:x=或x=-(負值不符合題意,舍去),∴長方形紙片的長為2cm,∵5<<6,∴10<2,∴小麗不能用這塊紙片裁出符合要求的紙片.【點睛】本題考查了算術(shù)平方根.解題的關(guān)鍵是掌握算術(shù)平方根的定義:一個正數(shù)的正的平方根叫這個數(shù)的算術(shù)平方根;0的算術(shù)平方根為0.也考查了估算無理數(shù)的大?。?.(1)大正方形的邊長是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】(1)大正方形的邊長是(2)設(shè)長方形紙解析:(1)大正方形的邊長是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】(1)大正方形的邊長是(2)設(shè)長方形紙片的長為3xcm,寬為2xcm,則3x?2x=480,解得:x=因為,所以沿此大正方形邊的方向剪出一個長方形,不能使剪出的長方形紙片的長寬之比為2:3,且面積為480cm2.【點睛】本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.5.(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長為acm∴解析:(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長為acm∴a2=400又∵a>0∴a=20又∵要裁出的長方形面積為300cm2∴若以原正方形紙片的邊長為長方形的長,則長方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形(2)∵長方形紙片的長寬之比為3:2∴設(shè)長方形紙片的長為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長方形紙片的長為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片二、解答題6.(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過過作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過三角形內(nèi)角和得到,由角平分線解析:(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過過作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過三角形內(nèi)角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問題的關(guān)鍵.7.(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結(jié)合已知條件,得出即可證明;(2)過點E作HE∥CD,設(shè)由(1)得AB∥CD解析:(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結(jié)合已知條件,得出即可證明;(2)過點E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點N作NP∥CD,過點M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因為,代入的式子即可求出.【詳解】(1)過點E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點N作NP∥CD,過點M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯角相等,同位角相等來計算和推導(dǎo)角之間的關(guān)系.8.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.9.(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點E作直線EH∥AB,由角平分線的性質(zhì)和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準確計算是解題的關(guān)鍵.10.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=解析:(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角以及同旁內(nèi)角.三、解答題11.(1)146°;(2)∠AOG+∠NEF=90°;(3)見解析【分析】(1)作CP//a,則CP//a//b,根據(jù)平行線的性質(zhì)求解.(2)作CP//a,由平行線的性質(zhì)及等量代換得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)見解析【分析】(1)作CP//a,則CP//a//b,根據(jù)平行線的性質(zhì)求解.(2)作CP//a,由平行線的性質(zhì)及等量代換得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分類討論點P在線段GF上或線段GF延長線上兩種情況,過點P作a,b的平行線求解.【詳解】解:(1)如圖,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如圖,作CP//a,則CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如圖,當點P在GF上時,作PN//a,連接PQ,OP,則PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如圖,當點P在GF延長線上時,作PN//a,連接PQ,OP,則PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【點睛】本題考查平行線的性質(zhì)的應(yīng)用,解題關(guān)鍵是熟練掌握平行線的性質(zhì),通過添加輔助線及分類討論的方法求解.12.(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點F,根據(jù)平行線的性質(zhì)推出;(2)如圖2,過點E作ES∥AB,過點H作HT∥AB,根據(jù)AB∥CD,AB∥E解析:(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點F,根據(jù)平行線的性質(zhì)推出;(2)如圖2,過點E作ES∥AB,過點H作HT∥AB,根據(jù)AB∥CD,AB∥ES推出,再根據(jù)AB∥TH,AB∥CD推出,最后根據(jù)比大得出的度數(shù);(3)如圖3,過點E作EQ∥DN,根據(jù)得出的度數(shù),根據(jù)條件再逐步求出的度數(shù).【詳解】(1)如答圖1所示,延長DE交AB于點F.AB∥CD,所以,又因為,所以,所以AC∥DF,所以.因為,所以.(2)如答圖2所示,過點E作ES∥AB,過點H作HT∥AB.設(shè),,因為AB∥CD,AB∥ES,所以,,所以,因為AB∥TH,AB∥CD,所以,,所以,因為比大,所以,所以,所以,所以(3)不發(fā)生變化如答圖3所示,過點E作EQ∥DN.設(shè),,由(2)易知,所以,所以,所以,所以.【點睛】本題考查了平行線的性質(zhì),求角的度數(shù),正確作出相關(guān)的輔助線,根據(jù)條件逐步求出角度的度數(shù)是解題的關(guān)鍵.13.(1);(2)①,見解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對比即可;②分類討論點在的左右兩側(cè)的情況,解析:(1);(2)①,見解析;②或【分析】(1)由平行線的性質(zhì)可得到:,,再利用角的等量代換換算即可;(2)①設(shè),,利用角平分線的定義和角的等量代換表示出對比即可;②分類討論點在的左右兩側(cè)的情況,運用角的等量代換換算即可.【詳解】.解:(1)設(shè)在上有一點N在點A的右側(cè),如圖所示:∵∴,∴∴(2)①.證明:設(shè),.∴.∵為的角平分線,∴.∵,∴.∴.∴.②當點在點右側(cè)時,如圖:由①得:又∵∴∵∴當點在點左側(cè),在右側(cè)時,如圖:∵為的角平分線∴∵∴,∵∴∴∵∴又∵∴∴當點和在點左側(cè)時,設(shè)在上有一點在點的右側(cè)如圖:此時仍有,∴∴綜合所述:或【點睛】本題主要考查了平行線的性質(zhì),角平分線的定義,角的等量代換等,靈活運用平行線的性質(zhì)和角平分線定義等量代換出角的關(guān)系是解題的關(guān)鍵.14.(1)60°;(2)50°;(3)或【分析】(1)根據(jù)平行線的性質(zhì)可得的度數(shù),再根據(jù)角平分線的性質(zhì)可得的度數(shù),應(yīng)用三角形內(nèi)角和計算的度數(shù),由已知條件,可計算出的度數(shù);(2)根據(jù)題意畫出圖形,先解析:(1)60°;(2)50°;(3)或【分析】(1)根據(jù)平行線的性質(zhì)可得的度數(shù),再根據(jù)角平分線的性質(zhì)可得的度數(shù),應(yīng)用三角形內(nèi)角和計算的度數(shù),由已知條件,可計算出的度數(shù);(2)根據(jù)題意畫出圖形,先根據(jù)可計算出的度數(shù),由可計算出的度數(shù),再根據(jù)平行線的性質(zhì)和角平分線的性質(zhì),計算出的度數(shù),即可得出結(jié)論;(3)根據(jù)題意可分兩種情況,①若點運動到上方,根據(jù)平行線的性質(zhì)由可計算出的度數(shù),再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),計算出的度數(shù),再,,列出等量關(guān)系求解即可等處結(jié)論;②若點運動到下方,根據(jù)平行線的性質(zhì)由可計算出的度數(shù),再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),計算出的度數(shù),再,列出等量關(guān)系求解即可等處結(jié)論.【詳解】解:(1),,,平分,,,又,;(2)根據(jù)題意畫圖,如圖1所示,,,,,,,又平分,,;(3)①如圖2所示,,,平分,,,又,,,解得;②如圖3所示,,,平分,,,又,,,解得.綜上的度數(shù)為或.【點睛】本題主要考查平行線的性質(zhì)和角平分線的性質(zhì),兩直線平行,同位角相等.兩直線平行,同旁內(nèi)角互補.
兩直線平行,內(nèi)錯角相等.合理應(yīng)用平行線的性質(zhì)是解決本題的關(guān)鍵.15.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進而得出結(jié)論;(3)過點C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過點作,圖2,,,,,,;(3),圖3理由如下:如圖3,過點作,平分,,,又,,,,,又,,.【點睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.四、解答題16.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據(jù)題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據(jù)點P是動點,分三種情況討論:①當點P在AB與CD之間時;②當點P在AB上方時;③當點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點P是動點,分三種情況討論:①當點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質(zhì),外角的性質(zhì),掌握平行線的性質(zhì)是解題的關(guān)鍵,注意分情況討論問題.17.[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可解析:[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;[變式思考]根據(jù)角平分線的定義和對頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點共線
AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點睛】本題考查三角形的外角的性質(zhì),直角三角形兩銳角互余,角平分線的有關(guān)證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個外角等于與它不相鄰的兩個內(nèi)角之和,理解并掌握是解決此題的關(guān)鍵.18.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內(nèi)角各定理可求∠AQB的大?。?2)題求∠P的大小,用鄰補角、角平分線、平角、直角和三角形內(nèi)角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點睛】本題考查三角形內(nèi)角和定理,垂直,角平分線,平角,直角和角的和差等知識點,同時,也是一個以靜求動的一個點型題目,有益于培養(yǎng)學生的思維幾何綜合題.19.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O(shè)為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年武陟縣大封鎮(zhèn)衛(wèi)生院公開招聘口腔醫(yī)師備考題庫及一套完整答案詳解
- 2026年陜西水務(wù)發(fā)展集團公開招聘備考題庫含答案詳解
- 2026年陽宗海風景名勝區(qū)“社會救助服務(wù)人員”公開招聘備考題庫及一套完整答案詳解
- 2026年滄源佤族自治縣國有資本投資運營集團有限責任公司公開招聘備考題庫及完整答案詳解一套
- 住宿員工安全管理制度
- 2026年新余市市直及縣區(qū)重點中學公開招聘體育教師備考題庫帶答案詳解
- 信宜市婦幼保健院2026年赴廣州中醫(yī)藥大學公開招聘衛(wèi)生專業(yè)技術(shù)人員的備考題庫完整答案詳解
- 2026年西安中醫(yī)腎病醫(yī)院招聘備考題庫及1套完整答案詳解
- 中學學生綜合素質(zhì)評價制度
- 2026年沈陽大學和沈陽開放大學面向社會公開招聘急需緊缺事業(yè)單位工作人員21人備考題庫及1套完整答案詳解
- 老年精神科護理
- CJ/T 461-2014水處理用高密度聚乙烯懸浮載體填料
- 重癥醫(yī)學科醫(yī)院感染控制原則專家共識(2024)解讀
- 數(shù)據(jù)治理實施方案
- 計算流體力學課程大作業(yè)-2
- 2024-2025學年成都市高一上英語期末考試題(含答案和音頻)
- 煤磨動火作業(yè)施工方案
- 中建epc人防工程施工方案
- ETC-60HT溫控器使用說明書
- 醫(yī)院培訓課件:《提高術(shù)后管道標識完備率》
- 工程施工及安全管理制度
評論
0/150
提交評論