版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.問題情境:在平面直角坐標(biāo)系xOy中有不重合的兩點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2),小明在學(xué)習(xí)中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長(zhǎng)度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長(zhǎng)度為|x1﹣x2|;(應(yīng)用):(1)若點(diǎn)A(﹣1,1)、B(2,1),則AB∥x軸,AB的長(zhǎng)度為.(2)若點(diǎn)C(1,0),且CD∥y軸,且CD=2,則點(diǎn)D的坐標(biāo)為.(拓展):我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn)M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點(diǎn)M(﹣1,1)與點(diǎn)N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點(diǎn)Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.2.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為______(請(qǐng)直接寫出答案,用含的式子表示).3.已知:AB∥CD,截線MN分別交AB、CD于點(diǎn)M、N.(1)如圖①,點(diǎn)B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長(zhǎng)線于點(diǎn)F;請(qǐng)寫出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,當(dāng)點(diǎn)P在射線NT上運(yùn)動(dòng)時(shí),∠DCP與∠BMT的平分線交于點(diǎn)Q,則∠Q與∠CPM的比值為(直接寫出答案).4.綜合與實(shí)踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個(gè)公共點(diǎn),我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識(shí),是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.5.如圖,,直線與、分別交于點(diǎn)、,點(diǎn)在直線上,過點(diǎn)作,垂足為點(diǎn).(1)如圖1,求證:;(2)若點(diǎn)在線段上(不與、、重合),連接,和的平分線交于點(diǎn)請(qǐng)?jiān)趫D2中補(bǔ)全圖形,猜想并證明與的數(shù)量關(guān)系;6.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點(diǎn)E是在平行線AB,CD內(nèi),AD右側(cè)的任意一點(diǎn),探究∠BAE,∠CDE,∠E之間的數(shù)量關(guān)系,并證明.(3)如圖3,若∠C=90°,且點(diǎn)E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內(nèi)部,且交BC于點(diǎn)M,交AE延長(zhǎng)線于點(diǎn)F,∠AED+∠AEC=180°,①直接寫出∠AED與∠FDC的數(shù)量關(guān)系:.②點(diǎn)P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補(bǔ)全圖形后,求∠EPD的度數(shù)7.規(guī)定兩數(shù)a,b之間的一種運(yùn)算,記作(a,b):如果,那么(a,b)=c.例如:因?yàn)?3=8,所以(2,8)=3.(1)根據(jù)上述規(guī)定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).請(qǐng)你嘗試運(yùn)用上述這種方法說明下面這個(gè)等式成立的理由:(4,5)+(4,6)=(4,30)8.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因?yàn)椋?,因?yàn)椋?(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運(yùn)算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運(yùn)算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.9.小學(xué)的時(shí)候我們已經(jīng)學(xué)過分?jǐn)?shù)的加減法法則:“同分母分?jǐn)?shù)相加減,分母不變,分子相加減;異分母分?jǐn)?shù)相加減,先通分,轉(zhuǎn)化為同分母分?jǐn)?shù),再加減.”如:,反之,這個(gè)式子仍然成立,即:.(1)問題發(fā)現(xiàn)觀察下列等式:①,②,③,…,猜想并寫出第個(gè)式子的結(jié)果:.(直接寫出結(jié)果,不說明理由)(2)類比探究將(1)中的的三個(gè)等式左右兩邊分別相加得:,類比該問題的做法,請(qǐng)直接寫出下列各式的結(jié)果:①;②;(3)拓展延伸計(jì)算:.10.我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解:(,是正整數(shù),且),在的所有這種分解中,如果,兩因數(shù)之差的絕對(duì)值最小,我們就稱是的最佳分解,并規(guī)定:.例如:可分解成,或,因?yàn)?,所以是的最佳分解,所以?)填空:;;(2)一個(gè)兩位正整數(shù)(,,,為正整數(shù)),交換其個(gè)位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為,求出所有的兩位正整數(shù);并求的最大值;(3)填空:①;②;11.閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用來表示的小數(shù)部分,事實(shí)上,小明的表示方法是有道理的,因?yàn)榈恼麛?shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是的小數(shù)部分,又例如:∵,即,∴的整數(shù)部分為2,小數(shù)部分為。請(qǐng)解答(1)的整數(shù)部分是______,小數(shù)部分是_______。(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求的值。(3)已知x是的整數(shù)部分,y是其小數(shù)部分,直接寫出的值.12.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因?yàn)?,所以,因?yàn)椋?(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運(yùn)算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運(yùn)算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.13.已知、兩點(diǎn)的坐標(biāo)分別為,,將線段水平向右平移到,連接,,得四邊形,且.(1)點(diǎn)的坐標(biāo)為______,點(diǎn)D的坐標(biāo)為______;(2)如圖1,軸于,上有一動(dòng)點(diǎn),連接、,求最小時(shí)點(diǎn)位置及其坐標(biāo),并說明理由;(3)如圖2,為軸上一點(diǎn),若平分,且于,.求與之間的數(shù)量關(guān)系.14.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動(dòng)點(diǎn).(1)如圖1所示時(shí),試問,,滿足怎樣的數(shù)量關(guān)系?并說明理由.(2)除了(1)的結(jié)論外,試問,,還可能滿足怎樣的數(shù)量關(guān)系?請(qǐng)畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)15.如圖1,點(diǎn)是第二象限內(nèi)一點(diǎn),軸于,且是軸正半軸上一點(diǎn),是x軸負(fù)半軸上一點(diǎn),且.(1)(),()(2)如圖2,設(shè)為線段上一動(dòng)點(diǎn),當(dāng)時(shí),的角平分線與的角平分線的反向延長(zhǎng)線交于點(diǎn),求的度數(shù):(注:三角形三個(gè)內(nèi)角的和為)(3)如圖3,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),作交于的平分線交于,當(dāng)點(diǎn)在運(yùn)動(dòng)的過程中,的大小是否變化?若不變,求出其值;若變化,請(qǐng)說明理由.16.如果x是一個(gè)有理數(shù),我們定義x表示不小于x的最小整數(shù).如3.24,2.62,55,66.由定義可知,任意一個(gè)有理數(shù)都能寫成xxb的形式(0≤b<1).(1)直接寫出x與x,x1的大小關(guān)系;提示1:用“不完全歸納法”推導(dǎo)x與x,x1的大小關(guān)系;提示2:用“代數(shù)推理”的方法推導(dǎo)x與x,x1的大小關(guān)系.(2)根據(jù)(1)中的結(jié)論解決下列問題:①直接寫出滿足3m74的m取值范圍;②直接寫出方程3.5n22n1的解..17.對(duì)于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點(diǎn)P(x,y),給出如下定義:將點(diǎn)P(x,y)平移到P'(x+t,y﹣t)稱為將點(diǎn)P進(jìn)行“t型平移”,點(diǎn)P'稱為將點(diǎn)P進(jìn)行“t型平移”的對(duì)應(yīng)點(diǎn);將圖形G上的所有點(diǎn)進(jìn)行“t型平移”稱為將圖形G進(jìn)行“t型平移”.例如,將點(diǎn)P(x,y)平移到P'(x+1,y﹣1)稱為將點(diǎn)P進(jìn)行“l(fā)型平移”,將點(diǎn)P(x,y)平移到P'(x﹣1,y+1)稱為將點(diǎn)P進(jìn)行“﹣l型平移”.已知點(diǎn)A(2,1)和點(diǎn)B(4,1).(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為.(2)①將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是.②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是.(3)已知點(diǎn)C(6,1),D(8,﹣1),點(diǎn)M是線段CD上的一個(gè)動(dòng)點(diǎn),將點(diǎn)B進(jìn)行“t型平移”后得到的對(duì)應(yīng)點(diǎn)為B',當(dāng)t的取值范圍是時(shí),B'M的最小值保持不變.18.如圖,在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|y1﹣y2|.(1)填空:已知點(diǎn)A(3,6)與點(diǎn)B(5,2),則點(diǎn)A與點(diǎn)B的“非常距離”為;(2)已知點(diǎn)C(﹣1,2),點(diǎn)D為y軸上的一個(gè)動(dòng)點(diǎn).①若點(diǎn)C與點(diǎn)D的“非常距離”為2,求點(diǎn)D的坐標(biāo);②直接寫出點(diǎn)C與點(diǎn)D的“非常距離”的最小值.19.兩個(gè)兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個(gè)四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個(gè)四位數(shù).已知前一個(gè)四位數(shù)比后一個(gè)四位數(shù)大990.若設(shè)較大的兩位數(shù)為x,較小的兩位數(shù)為y,回答下列問題:(1)可得到下列哪一個(gè)方程組?A.B.C.D.(2)解所確定的方程組,求這兩個(gè)兩位數(shù).20.判斷下面方程組的解法是否正確,如果全部正確,判斷即可;如果有錯(cuò)誤,請(qǐng)寫出正確的解題過程.解:①×2-②×3,得,解得,把代入方程①,得,解得.∴原方程組的解為21.(1)閱讀下列材料并填空:對(duì)于二元一次方程組,我們可以將x,y的系數(shù)和相應(yīng)的常數(shù)項(xiàng)排成一個(gè)數(shù)表,求得的一次方程組的解,用數(shù)表可表示為.用數(shù)表可以簡(jiǎn)化表達(dá)解一次方程組的過程如下,請(qǐng)補(bǔ)全其中的空白:從而得到該方程組的解為x=,y=.(2)仿照(1)中數(shù)表的書寫格式寫出解方程組的過程.22.如圖,已知,,且滿足.(1)求、兩點(diǎn)的坐標(biāo);(2)點(diǎn)在線段上,、滿足,點(diǎn)在軸負(fù)半軸上,連交軸的負(fù)半軸于點(diǎn),且,求點(diǎn)的坐標(biāo);(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點(diǎn),過作軸于,若,且,求點(diǎn)的坐標(biāo).23.閱讀感悟:有些關(guān)于方程組的問題,要求的結(jié)果不是每一個(gè)未知數(shù)的值,而是關(guān)于未知數(shù)的代數(shù)式的值,如以下問題:已知實(shí)數(shù)、滿足①,②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得、的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運(yùn)算量比較大.其實(shí),仔細(xì)觀察兩個(gè)方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當(dāng)變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.解決問題:(1)已知二元一次方程組,則_______,_______;(2)某班級(jí)組織活動(dòng)購(gòu)買小獎(jiǎng)品,買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元,則購(gòu)買6支水筆、6塊橡皮、6本記事本共需多少元?(3)對(duì)于實(shí)數(shù)、,定義新運(yùn)算:,其中、、是常數(shù),等式右邊是通常的加法和乘法運(yùn)算.已知,,那么_______.24.如圖,在平面直角坐標(biāo)系中,已知,點(diǎn),,,,,滿足,(1)直接寫出點(diǎn),,的坐標(biāo)及的面積;(2)如圖2,過點(diǎn)作直線,已知是上的一點(diǎn),且,求的取值范圍;(3)如圖3,是線段上一點(diǎn),①求,之間的關(guān)系;②點(diǎn)為點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),已知,求點(diǎn)的坐標(biāo).25.若任意一個(gè)代數(shù)式,在給定的范圍內(nèi)求得的最大值和最小值恰好也在該范圍內(nèi),則稱這個(gè)代數(shù)式是這個(gè)范圍的“湘一代數(shù)式”.例如:關(guān)于x的代數(shù)式,當(dāng)1x1時(shí),代數(shù)式在x1時(shí)有最大值,最大值為1;在x0時(shí)有最小值,最小值為0,此時(shí)最值1,0均在1x1這個(gè)范圍內(nèi),則稱代數(shù)式是1x1的“湘一代數(shù)式”.(1)若關(guān)于的代數(shù)式,當(dāng)時(shí),取得的最大值為,最小值為,所以代數(shù)式(填“是”或“不是”)的“湘一代數(shù)式”.(2)若關(guān)于的代數(shù)式是的“湘一代數(shù)式”,求a的最大值與最小值.(3)若關(guān)于的代數(shù)式是的“湘一代數(shù)式”,求m的取值范圍.26.某市出租車的起步價(jià)是7元(起步價(jià)是指不超過行程的出租車價(jià)格),超過3km行程后,其中除的行程按起步價(jià)計(jì)費(fèi)外,超過部分按每千米1.6元計(jì)費(fèi)(不足按計(jì)算).如果僅去程乘出租車而回程時(shí)不乘坐此車,并且去程超過,那么顧客還需付回程的空駛費(fèi),超過部分按每千米0.8元計(jì)算空駛費(fèi)(即超過部分實(shí)際按每千米2.4元計(jì)費(fèi)).如果往返都乘同一出租車并且中間等候時(shí)間不超過3分鐘,則不收取空駛費(fèi)而加收1.6元等候費(fèi).現(xiàn)設(shè)小文等4人從市中心A處到相距()的B處辦事,在B處停留的時(shí)間在3分鐘以內(nèi),然后返回A處.現(xiàn)在有兩種往返方案:方案一:去時(shí)4人同乘一輛出租車,返回都乘公交車(公交車票為每人2元);方案二:4人乘同一輛出租車往返.問選擇哪種計(jì)費(fèi)方式更省錢?(寫出過程)27.對(duì)、定義了一種新運(yùn)算T,規(guī)定(其中,均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:,已知,.(1)求,的值;(2)求.(3)若關(guān)于的不等式組恰好有4個(gè)整數(shù)解,求的取值范圍.28.中國(guó)傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場(chǎng)開展了“歡度端午,回饋顧客”的讓利促銷活動(dòng),對(duì)部分品牌的粽子進(jìn)行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場(chǎng)讓利促銷活動(dòng)期間,某敬老院準(zhǔn)備購(gòu)買甲、乙兩種品牌粽子共40盒,總費(fèi)用不超過2300元,問敬老院最多可購(gòu)買多少盒乙品牌粽子?29.如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別是﹣1,1,點(diǎn)P是線段AB上一動(dòng)點(diǎn),給出如下定義:如果在數(shù)軸上存在動(dòng)點(diǎn)Q,滿足|PQ|=2,那么我們把這樣的點(diǎn)Q表示的數(shù)稱為連動(dòng)數(shù),特別地,當(dāng)點(diǎn)Q表示的數(shù)是整數(shù)時(shí)我們稱為連動(dòng)整數(shù).(1)﹣3,0,2.5是連動(dòng)數(shù)的是;(2)關(guān)于x的方程2x﹣m=x+1的解滿足是連動(dòng)數(shù),求m的取值范圍;(3)當(dāng)不等式組的解集中恰好有4個(gè)解是連動(dòng)整數(shù)時(shí),求a的取值范圍.30.在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD.(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由;(3)點(diǎn)P是直線BD上一個(gè)動(dòng)點(diǎn),連接PC、PO,當(dāng)點(diǎn)P在直線BD上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.【應(yīng)用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應(yīng)用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長(zhǎng)度為|x1?x2|,代入數(shù)據(jù)即可得出結(jié)論;(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點(diǎn)之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;(2)根據(jù)兩點(diǎn)之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論;(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點(diǎn)之間的折線距離公式即可得出結(jié)論;【詳解】(應(yīng)用):(1)AB的長(zhǎng)度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點(diǎn)D的坐標(biāo)為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當(dāng)點(diǎn)Q的坐標(biāo)為(2,0)時(shí),d(P,Q)=|3﹣2|+|3﹣0|=4;當(dāng)點(diǎn)Q的坐標(biāo)為(﹣2,0)時(shí),d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點(diǎn)睛】本題是三角形綜合題目,考查了新定義、兩點(diǎn)間的距離公式、三角形面積等知識(shí),讀懂題意并熟練運(yùn)用兩點(diǎn)間的距離及兩點(diǎn)之間的折線距離公式是解題的關(guān)鍵.2.(1)見解析;(2)10°;(3)【分析】(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)?,代入的式子即可求出.【詳解】?)過點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點(diǎn)E作HE∥CD,如圖,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點(diǎn)N作NP∥CD,過點(diǎn)M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯(cuò)角相等,同位角相等來計(jì)算和推導(dǎo)角之間的關(guān)系.3.(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點(diǎn)E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點(diǎn)E,∵M(jìn)Q平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.4.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點(diǎn)睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.5.(1)證明見解析;(2)補(bǔ)圖見解析;當(dāng)點(diǎn)在上時(shí),;當(dāng)點(diǎn)在上時(shí),.【分析】(1)過點(diǎn)作,根據(jù)平行線的性質(zhì)即可求解;(2)分兩種情況:當(dāng)點(diǎn)在上,當(dāng)點(diǎn)在上,再過點(diǎn)作即可求解.【詳解】(1)證明:如圖,過點(diǎn)作,∴,∵,∴.∴.∵,∴,∴.(2)補(bǔ)全圖形如圖2、圖3,猜想:或.證明:過點(diǎn)作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當(dāng)點(diǎn)在上時(shí),∵平分,∴,∵,∴,即.如圖2,當(dāng)點(diǎn)在上時(shí),∵平分,∴.∴.即.【點(diǎn)睛】本題考查了平行線的基本性質(zhì)、角平分線的基本性質(zhì)及角的運(yùn)算,解題的關(guān)鍵是準(zhǔn)確作出平行線,找出角與角之間的數(shù)量關(guān)系.6.(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據(jù)平行線的性質(zhì)及判定可得結(jié)論;(2)過點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)得AB∥CD∥EF,然后由兩直線平行內(nèi)錯(cuò)角相等可得結(jié)論;(3)①根據(jù)∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導(dǎo)出角的關(guān)系;②先根據(jù)∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據(jù)∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數(shù).【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過點(diǎn)E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì),角平分線的性質(zhì)等知識(shí)點(diǎn)是解題的關(guān)鍵.7.(1)3,0,-2(2)(4,30)【解析】分析:(1)根據(jù)閱讀材料,應(yīng)用規(guī)定的運(yùn)算方式計(jì)算即可;(2)應(yīng)用規(guī)定和同底數(shù)冪相乘的性質(zhì)逆用變形計(jì)算即可.詳解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=∴(2,)=-2(2)設(shè)(4,5)=x,(4,6)=y則,=6∴∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)點(diǎn)睛:此題是一個(gè)規(guī)定計(jì)算的應(yīng)用型的題目,關(guān)鍵是靈活應(yīng)用規(guī)定的關(guān)系式計(jì)算,熟練記憶冪的相關(guān)性質(zhì).8.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運(yùn)算性質(zhì),g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運(yùn)算性質(zhì),先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點(diǎn)睛】本題考查有理數(shù)的乘方運(yùn)算,新定義;能夠?qū)⑿露x的運(yùn)算轉(zhuǎn)化為有理數(shù)的乘方運(yùn)算是解題的關(guān)鍵.9.(1);(2)①;②;(3).【分析】(1)根據(jù)題目中的式子可以寫出第n個(gè)式子的結(jié)果;(2)①根據(jù)題目中的式子的特點(diǎn)和(1)中的結(jié)果,可以求得所求式子的值;②根據(jù)題目中的式子的特點(diǎn)和(1)中的結(jié)果,可以求得所求式子的值;(3)根據(jù)題目中式子的特點(diǎn),可以求得所求式子的值.【詳解】解:(1)由題目中的式子可得,,故答案為:;(2)①,故答案為:;②,故答案為:;(3).【點(diǎn)睛】本題考查數(shù)字的變化類、有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中式子的變化特點(diǎn),求出所求式子的值.10.(1),1;(2)兩位正整數(shù)為39,28,17,的最大值為;(3)①;②【分析】(1)仿照樣例進(jìn)行計(jì)算即可;(2)由題設(shè)可以看出交換前原數(shù)的十位上數(shù)字為a,個(gè)位上數(shù)字為b,則原數(shù)可以表示為,交換后十位上數(shù)字為b,個(gè)位上數(shù)字為a,則交換后數(shù)字可以表示為,根據(jù)“交換其個(gè)位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54”確定出a與b的關(guān)系式,進(jìn)而求出所有的兩位數(shù),然后求解確定出的最大值即可;(3)根據(jù)樣例分解計(jì)算即可.【詳解】解:(1)∵,∴;∵,∴,故答案為:;1;(2)由題意可得:交換后的數(shù)減去交換前的數(shù)的差為:,∴,∵,∴或或,∴t為39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案為:;【點(diǎn)睛】本題主要考查了有理數(shù)的運(yùn)算,理解最佳分解的定義,并將其轉(zhuǎn)化為有理數(shù)的運(yùn)算是解題的關(guān)鍵.11.(1)3;﹣3;(2)4;(3)x﹣y=7﹣.【分析】(1)由3<<4可得答案;(2)由2<<3知a=﹣2,由6<<7知b=6,據(jù)此求解可得;(3)由2<<3知5<3+<6,據(jù)此得出x、y的值代入計(jì)算可得.【詳解】(1)∵3<<4,∴的整數(shù)部分是3,小數(shù)部分是﹣3;故答案為3;﹣3.(2)∵2<<3,∴a=﹣2,∵6<<7,∴b=6,∴a+b﹣=﹣2+6﹣=4.(3)∵2<<3,∴5<3+<6,∴3+的整數(shù)部分為x=5,小數(shù)部分為y=3+﹣5=﹣2.則x﹣y=5﹣(﹣2)=5﹣+2=7﹣.【點(diǎn)睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是熟記估算無理數(shù)的大小.12.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運(yùn)算性質(zhì),g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運(yùn)算性質(zhì),先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點(diǎn)睛】本題考查有理數(shù)的乘方運(yùn)算,新定義;能夠?qū)⑿露x的運(yùn)算轉(zhuǎn)化為有理數(shù)的乘方運(yùn)算是解題的關(guān)鍵.13.(1),;(2),理由見解析;(3)【分析】(1)根據(jù)已知條件求出AD和BC的長(zhǎng)度,即可得到D、C的坐標(biāo);(2)連接BD與直線CG相交,其交點(diǎn)Q即為所求,然后根據(jù)求出QC、QG后即可得到Q點(diǎn)坐標(biāo);(3)過H作HF∥AB,過C作CM∥ED,則根據(jù)已知條件、平行線的性質(zhì)和角的有關(guān)知識(shí)可以得到.【詳解】(1)解:由題意可得四邊形ABCD是平行四邊形,且AD與BC間距離為1-(-1)=2,∴平行四邊形ABCD的高為2,∴AD=BC=S四邊形ABCD÷2=12÷2=6,∴C點(diǎn)坐標(biāo)為(-4+6,-1)即(2,-1),D點(diǎn)坐標(biāo)為(-2+6,1)即(4,1);(2)解:如圖,連接交于,∵,∴此時(shí)最小(兩點(diǎn)之間,線段最短),過作于,∵,,,∴,,,設(shè),∴,,,又∵,∴,∴,∴,∴.(3)∵,,∴,,∴.∵平分,∴.又∵,設(shè),則,∴,,過作,又∵,∴,∴,∴.過作,∴,.∵于,∴,∴,∴,又∵,∴.【點(diǎn)睛】本題考查平行線的綜合應(yīng)用,熟練掌握平行線的判定與性質(zhì)、平移坐標(biāo)變換規(guī)律、兩點(diǎn)之間線段最短的性質(zhì)、角的有關(guān)知識(shí)和運(yùn)算是解題關(guān)鍵.14.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時(shí),;當(dāng)點(diǎn)在的右側(cè)時(shí),可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;過點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時(shí),,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時(shí),,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線后能求出各個(gè)角的度數(shù),是解此題的關(guān)鍵.15.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負(fù)數(shù)的和為零,各項(xiàng)分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進(jìn)而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標(biāo)是(-2,0)、B的坐標(biāo)是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵M(jìn)N平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)計(jì)算出相應(yīng)的線段的長(zhǎng)和判斷線段與坐標(biāo)軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).16.(1);(2)①;②或.【分析】(1)提示1:先列出4個(gè)x的值,分別得出與的大小關(guān)系,再利用“不完全歸納法”即可得;提示2:先根據(jù)“”得出,再根據(jù)“”即可得;(2)①根據(jù)(1)的結(jié)論得出,據(jù)此解不等式組即可得;②先根據(jù)(1)的結(jié)論得出,再解不等式組求出n的取值范圍,從而可得的取值范圍,然后根據(jù)“為整數(shù)”可得出方程,由此解方程即可得.【詳解】(1)提示1:當(dāng)時(shí),,則當(dāng)時(shí),,則當(dāng)時(shí),,則當(dāng)時(shí),,則由“不完全歸納法”可得:;提示2:,且;(2)①由(1)的結(jié)論得:解得;②由(1)的結(jié)論得:解得為整數(shù)則或解得或.【點(diǎn)睛】本題考查了一元一次不等式組的應(yīng)用、解一元一次方程等知識(shí)點(diǎn),理解新定義,正確求解不等式組是解題關(guān)鍵.17.(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為.【詳解】(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是P1,故答案為:P1;②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為,此時(shí)1≤t≤3.故答案為:1≤t≤3.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識(shí),解題的關(guān)鍵理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)利用圖象法解決問題,屬于中考創(chuàng)新題型.18.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點(diǎn)在軸上所以橫坐標(biāo)為0,,所以點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,可得點(diǎn)坐標(biāo),(3)已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,縱坐標(biāo)差的絕對(duì)是個(gè)動(dòng)點(diǎn)問題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點(diǎn)與點(diǎn)的“非常距離”為4.故答案為:4.(2)①點(diǎn)在軸上所以橫坐標(biāo)為0,點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,設(shè)點(diǎn)的縱坐標(biāo)為,,解得或,點(diǎn)的坐標(biāo)為或,故點(diǎn)的坐標(biāo)為或;②最小值為1,理由為已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,,設(shè)點(diǎn)的縱坐標(biāo)為,當(dāng)時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為1,當(dāng)或時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為.,點(diǎn)與點(diǎn)的“非常距離”的最小值為1,故點(diǎn)與點(diǎn)的“非常距離”的最小值為1.【點(diǎn)睛】本題考查了直角坐標(biāo)系坐標(biāo)結(jié)合絕對(duì)值的應(yīng)用,是新定義問題,難點(diǎn)在于第三問的動(dòng)點(diǎn)位置取值范圍討論,需要學(xué)生根據(jù)題意正確討論.19.(1)C;(2)39和29【分析】(1)首先設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意可得等量關(guān)系:①兩個(gè)兩位數(shù)的和為68,②比大990,根據(jù)等量關(guān)系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設(shè)較大的兩位數(shù)為,較小的兩位數(shù)為,根據(jù)題意,得故選:C;(2)化簡(jiǎn)得,①+②,得,即.①-②,得,即.所以這兩個(gè)數(shù)分別是39和29.【點(diǎn)睛】此題主要考查了由實(shí)際問題抽象出二元一次方程組和解二元一次方程組,關(guān)鍵是弄清題目意思,表示出“較小的兩位數(shù)寫在較大的兩位數(shù)的右邊,得到一個(gè)四位數(shù)為”,把較小的兩位數(shù)寫在較大的兩位數(shù)的左邊,得到另一個(gè)四位數(shù)為.20.【分析】用加減消元法解二元一次方程組,在兩個(gè)方程作差時(shí)符號(hào)出錯(cuò)了,正確為①②,得,再求解即可.【詳解】解:上述解法不正確.正確解題過程如下:①②,得,解得,把代入方程①,得,解得.原方程組的解為.【點(diǎn)睛】本題考查了二元一次方程組的解,解題的關(guān)鍵是熟練掌握加減消元法解二元一次方程組.21.(1)6,10;(2)。【解析】【分析】(1)下行-上行后將下行除以3將的系數(shù)化為1即可得方程組的解;(2)類比(1)中方法通過加減法將、的系數(shù)化為1可得.【詳解】解:(1)下行﹣上行,,故答案為:6,10;(2)所以方程組的解為.【點(diǎn)睛】本題主要考查矩陣法解二元一次方程組,熟練掌握加減消元法解二元一次方程組是解題的關(guān)鍵.22.(1),;(2);(3)【解析】【分析】(1)利用非負(fù)數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點(diǎn)C坐標(biāo),進(jìn)而由△ACD面積求出D點(diǎn)坐標(biāo).(3)由平行線間距離相等得到,繼而求出E點(diǎn)坐標(biāo),同理求出F點(diǎn)坐標(biāo),再由GE=12求出G點(diǎn)坐標(biāo),根據(jù)求出PG的長(zhǎng)即可求P點(diǎn)坐標(biāo).【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點(diǎn)睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標(biāo)與圖形的性質(zhì)、平移的性質(zhì),靈活運(yùn)用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.23.(1);5;(2)購(gòu)買6支水筆、6塊橡皮、6本記事本共需48元;(3).【分析】(1)利用①?②可得x-y的值,利用可得出x+y的值;(2)設(shè)鉛筆的單價(jià)為m元,橡皮的單價(jià)為元,記事本的單價(jià)為元,根據(jù)“買20支水筆、3塊橡皮、2本記事本共需35元,買39支水筆、5塊橡皮、3本記事本工序62元”,即可得出關(guān)于m,n,p的三元一次方程組,由2×①-②可得的值,再乘5即可求得結(jié)果;(3)根據(jù)新運(yùn)算的定義可得出關(guān)于a,b,c的三元一次方程組,由3×①?2×②可得出的值,從而可求得結(jié)果.【詳解】(1)由①?②可得:x-y=-1,由可得x+y=5故答案為:;5.(2)設(shè)水筆的單價(jià)為元,橡皮的單價(jià)為元,記事本的單價(jià)為元,依題意,得:,由可得,.故購(gòu)買6支水筆、6塊橡皮、6本記事本共需48元.(3)依題意得:由3×①?2×②可得:即故答案為:.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用及三元一次方程組的應(yīng)用,解題的關(guān)鍵是:(1)運(yùn)用“整體思想”求出x-y,x+y的值;(2)(3)找出等量關(guān)系,正確列出三元一次方程組.24.(1),,,;(2)的取值范圍為;(3)①;②【分析】(1)根據(jù)求出a、b、c的值,由此求解即可;(2)分當(dāng)點(diǎn)在直線上位于軸左側(cè)時(shí)和當(dāng)點(diǎn)在直線上位于軸右側(cè)時(shí)討論求解即可得到答案;(3)①由由得,,由此求解即可;②易得,連接,由得,,化簡(jiǎn)得,,然后聯(lián)立求解即可.【詳解】解:(1)∵,∴,∴,,,∴,,,∴,,,∴AC=10,OB=6,∴;(2)當(dāng)點(diǎn)在直線上位于軸左側(cè)時(shí),由題意得,,解得,,當(dāng)時(shí),,結(jié)合圖形可知,當(dāng)時(shí),;同理可得,當(dāng)點(diǎn)在直線上位于軸右側(cè)時(shí),,當(dāng)時(shí),,,解得,,結(jié)合圖形可知,當(dāng)時(shí),,∴的取值范圍為;(3)①由得,,化簡(jiǎn)得,;②易得,連接,由得,,化簡(jiǎn)得,,聯(lián)立方程組,解得,∴【點(diǎn)睛】本題主要考查了絕對(duì)值和算術(shù)平方根的非負(fù)性,三角形面積,解二元一次方程組,坐標(biāo)與圖形,截圖的關(guān)鍵在于能夠熟練掌握相關(guān)是進(jìn)行求解.25.(1)是.(2)a的最大值為,最小值為;(3)【分析】(1)先求解當(dāng)時(shí),的最大值與最小值,再根據(jù)定義判斷即可;(2)當(dāng)時(shí),得分<,分別求解在內(nèi)時(shí)的最大值與最小值,再列不等式組即可得到答案;(3)當(dāng)時(shí),分,兩種情況分別求解的最大值與最小值,再列不等式(組)求解即可.【詳解】解:(1)當(dāng)時(shí),取最大值,當(dāng)時(shí),取最小值所以代數(shù)式是的“湘一代數(shù)式”.故答案為:是.(2)∵,∴0≤|x|≤2,∴①當(dāng)a≥0時(shí),x=0時(shí),有最大值為,x=2或-2時(shí),有最小值為所以可得不等式組,由①得:由②得:所以:②a<0時(shí),x=0時(shí),有最小值為,x=2或-2時(shí),的有大值為所以可得不等式組,由①得:由②得:所以:<,綜上①②可得,所以a的最大值為,最小值為.(3)是的“湘一代數(shù)式”,當(dāng)時(shí),的最大值是最小值是當(dāng)時(shí),當(dāng)時(shí),取最小值當(dāng)時(shí),取最大值,解得:綜上:的取值范圍是:【點(diǎn)睛】本題考查的是新定義情境下的不等式或不等式組的應(yīng)用,理解定義列不等式(組)是解題的關(guān)鍵.26.當(dāng)x小于5時(shí),方案二省錢;當(dāng)x=5時(shí),兩種方案費(fèi)用相同;當(dāng)x大于5且不大于12時(shí)時(shí),方案一省錢【分析】先根據(jù)題意列出方案一的費(fèi)用:起步價(jià)+超過3km的km數(shù)×1.6元+回程的空駛費(fèi)+乘公交的費(fèi)用,再求出方案二的費(fèi)用:起步價(jià)+超過3km的km數(shù)×1.6元+返回時(shí)的費(fèi)用1.6x+1.6元的等候費(fèi),最后分三種情況比較兩個(gè)式子的大?。驹斀狻糠桨敢坏馁M(fèi)用:7+(x-3)×1.6+0.8(x-3)+4×2=7+1.6x-4.8+0.8x-2.4+8=7.8+2.4x,方案二的費(fèi)用:7+(x-3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x,①費(fèi)用相同時(shí)x的值7.8+2.4x=3.8+3.2x,解得x=5,所以當(dāng)x=5km時(shí)費(fèi)用相同;②方案一費(fèi)用高時(shí)x的值7.8+2.4x>3.8+3.2x,解得x<5,所以當(dāng)x<5km方案二省錢;③方案二費(fèi)用高時(shí)x的值7.8+2.4x<3.8+3.2x,解得x>5,所以當(dāng)x>5km方案一省錢.【點(diǎn)睛】此題考查了應(yīng)用類問題,解答本題的關(guān)鍵是根據(jù)題目所示的收費(fèi)標(biāo)準(zhǔn),列出x的關(guān)系式,再比較.27.(1),;(2);(3).【分析】(1)根據(jù)題中的新定義列出關(guān)于與的方程組,求出方程組的解即可得到與的值;(2)利用題中的新定義將,代入計(jì)算即可;(3)利用題中的新定義化簡(jiǎn)已知不等式組,表示出解集,由不等式組恰好有4個(gè)整數(shù)解,確定出的范圍,再解不等式組即可.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年宣城郎溪縣人民醫(yī)院公開招聘勞務(wù)派遣人員2名筆試模擬試題及答案解析
- 2026中國(guó)安能科工管理技術(shù)崗位招聘考試備考題庫及答案解析
- 2026漢中腦安康復(fù)醫(yī)院見習(xí)崗位招聘考試備考試題及答案解析
- 2026貴州烏當(dāng)區(qū)水務(wù)管理局公益性崗位招聘1人考試備考試題及答案解析
- 2026云南昆明市昆華實(shí)驗(yàn)中招聘10人考試參考題庫及答案解析
- 2026天津市中天天杰招聘考試參考試題及答案解析
- 2026年1月南平武夷山職業(yè)學(xué)院人才招聘32人筆試參考題庫及答案解析
- 2026年常州機(jī)電職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考題庫帶答案解析
- 2026年赤大白鐵路工務(wù)段招聘?jìng)淇碱}庫及參考答案詳解1套
- 蘭州大學(xué)口腔醫(yī)院2026年招聘?jìng)淇碱}庫完整參考答案詳解
- 2026年七臺(tái)河職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考試題帶答案解析
- GB 31604.1-2023食品安全國(guó)家標(biāo)準(zhǔn)食品接觸材料及制品遷移試驗(yàn)通則
- GB/T 3683-2023橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強(qiáng)液壓型規(guī)范
- 殯葬服務(wù)心得體會(huì) 殯儀館工作心得體會(huì)
- 電力線路維護(hù)檢修規(guī)程
- 春よ、來い(春天來了)高木綾子演奏長(zhǎng)笛曲譜鋼琴伴奏
- ARJ21機(jī)型理論知識(shí)考試題庫(匯總版)
- GB/T 4623-2014環(huán)形混凝土電桿
- GB/T 32065.4-2015海洋儀器環(huán)境試驗(yàn)方法第4部分:高溫試驗(yàn)
- 養(yǎng)殖場(chǎng)管理制度
- 《思想道德修養(yǎng)與法律基礎(chǔ)》測(cè)試試卷含答案
評(píng)論
0/150
提交評(píng)論