中考數(shù)學(xué)總復(fù)習(xí)《 圓》及答案詳解1套_第1頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》及答案詳解1套_第2頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》及答案詳解1套_第3頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》及答案詳解1套_第4頁(yè)
中考數(shù)學(xué)總復(fù)習(xí)《 圓》及答案詳解1套_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)總復(fù)習(xí)《圓》考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,是的直徑,弦于點(diǎn),,,則的長(zhǎng)為(

)A.4 B.5 C.8 D.162、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長(zhǎng)是(

)A. B. C. D.3、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點(diǎn)P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長(zhǎng)是()A.6 B.3 C.2 D.4、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.5、如圖,正方形的邊長(zhǎng)為4,以點(diǎn)為圓心,為半徑畫(huà)圓弧得到扇形(陰影部分,點(diǎn)在對(duì)角線上).若扇形正好是一個(gè)圓錐的側(cè)面展開(kāi)圖,則該圓錐的底面圓的半徑是(

)A. B.1 C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖1是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_(kāi)____.2、如圖,在中,的半徑為點(diǎn)是邊上的動(dòng)點(diǎn),過(guò)點(diǎn)作的一條切線(其中點(diǎn)為切點(diǎn)),則線段長(zhǎng)度的最小值為_(kāi)___.3、如圖,已知是的直徑,且,弦,點(diǎn)是弧上的點(diǎn),連接、,若,則的長(zhǎng)為_(kāi)_____.4、已知圓錐的高為4cm,母線長(zhǎng)為5cm,則圓錐的側(cè)面積為_(kāi)____cm2.5、如圖,正五邊形ABCDE內(nèi)接于⊙O,點(diǎn)F在上,則∠CFD=_____度.三、解答題(5小題,每小題10分,共計(jì)50分)1、【問(wèn)題提出】如何用圓規(guī)和無(wú)刻度的直尺作一條直線或圓弧平分已知扇形的面積?【初步嘗試】如圖1,已知扇形,請(qǐng)你用圓規(guī)和無(wú)刻度的直尺過(guò)圓心作一條直線,使扇形的面積被這條直線平分;【問(wèn)題聯(lián)想】如圖2,已知線段,請(qǐng)你用圓規(guī)和無(wú)刻度的直尺作一個(gè)以為斜邊的等腰直角三角形;【問(wèn)題再解】如圖3,已知扇形,請(qǐng)你用圓規(guī)和無(wú)刻度的直尺作一條以點(diǎn)為圓心的圓弧,使扇形的面積被這條圓弧平分.(友情提醒:以上作圖均不寫(xiě)作法,但需保留作圖痕跡)2、已知,正方形ABCD中,M、N分別為AD邊上的兩點(diǎn),連接BM、CN并延長(zhǎng)交于一點(diǎn)H,連接AH,E為BM上一點(diǎn),連接AE、CE,∠ECH+∠MNH=90°.(1)如圖1,若E為BM的中點(diǎn),且DM=3AM,,求線段AB的長(zhǎng).(2)如圖2,若點(diǎn)F為BE中點(diǎn),點(diǎn)G為CF延長(zhǎng)線上一點(diǎn),且EG//BC,CE=GE,求證:.(3)如圖3,在(1)的條件下,點(diǎn)P為線段AD上一動(dòng)點(diǎn),連接BP,作CQ⊥BP于Q,將△BCQ沿BC翻折得到△BCl,點(diǎn)K、R分別為線段BC、Bl上兩點(diǎn),且BI=3RI,BC=4BK,連接CR、IK交于點(diǎn)T,連接BT,直接寫(xiě)出△BCT面積的最大值.3、如圖①已知拋物線的圖象與軸交于、兩點(diǎn)(在的左側(cè)),與的正半軸交于點(diǎn),連結(jié);二次函數(shù)的對(duì)稱(chēng)軸與軸的交點(diǎn).(1)拋物線的對(duì)稱(chēng)軸與軸的交點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為_(kāi)____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點(diǎn),過(guò)點(diǎn)作軸的平行線,與直線交于點(diǎn)與拋物線交于點(diǎn),連結(jié),將沿翻折,的對(duì)應(yīng)點(diǎn)為’,在圖②中探究:是否存在點(diǎn),使得’恰好落在軸上?若存在,請(qǐng)求出的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.4、如圖所示,,.(1)已知,求以為直徑的半圓面積及扇形的面積;(2)若的長(zhǎng)度未知,已知陰影甲的面積為16平方厘米,能否求陰影乙的面積?若能,請(qǐng)直接寫(xiě)出結(jié)果;若不能,請(qǐng)說(shuō)明理由.5、下列每個(gè)正方形的邊長(zhǎng)為2,求下圖中陰影部分的面積.-參考答案-一、單選題1、C【解析】【分析】根據(jù)垂徑定理得出CM=DM,再由已知條件得出圓的半徑為5,在Rt△OCM中,由勾股定理得出CM即可,從而得出CD.【詳解】解:∵AB是⊙O的直徑,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8.故選:C.【考點(diǎn)】本題考查了垂徑定理,圓周角定理以及勾股定理,掌握定理的內(nèi)容并熟練地運(yùn)用是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識(shí)點(diǎn),能求出CE=DE是解此題的關(guān)鍵.3、C【解析】【分析】如圖,過(guò)作于過(guò)作于先證明三點(diǎn)共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過(guò)作于過(guò)作于是的切線,三點(diǎn)共線,為等邊三角形,四邊形是矩形,故選:【考點(diǎn)】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識(shí)是解題的關(guān)鍵.4、B【解析】【分析】扇形面積公式為:利用公式直接計(jì)算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點(diǎn)】本題考查的是扇形的面積的計(jì)算,掌握扇形的面積的計(jì)算公式是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長(zhǎng)即為圓錐底面圓的周長(zhǎng),即通過(guò)計(jì)算弧DE的長(zhǎng),再結(jié)合圓的周長(zhǎng)公式進(jìn)行計(jì)算即可得解.【詳解】∵正方形的邊長(zhǎng)為4∴∵是正方形的對(duì)角線∴∴∴圓錐底面周長(zhǎng)為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點(diǎn)】本題主要考查了扇形的弧長(zhǎng)公式,圓的周長(zhǎng)公式,正方形的性質(zhì)以及圓錐的相關(guān)知識(shí)點(diǎn),熟練掌握弧長(zhǎng)公式及圓的周長(zhǎng)公式是解決本題的關(guān)鍵.二、填空題1、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因?yàn)椤鰿DE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長(zhǎng),再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過(guò)F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時(shí),即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.2、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當(dāng)OP⊥AB時(shí),PQ最短;在中運(yùn)用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長(zhǎng),然后再運(yùn)用等面積法求得OP的長(zhǎng),最后運(yùn)用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當(dāng)OP⊥AB時(shí),如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點(diǎn)】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),此正確作出輔助線、根據(jù)勾股定理確定當(dāng)PO⊥AB時(shí)、線段PQ最短是解答本題的關(guān)鍵.3、9【解析】【分析】連接OC和OE,由同弧所對(duì)的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對(duì)的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點(diǎn)】本題考查了圓周角定理及垂徑定理等相關(guān)知識(shí)點(diǎn),本題的關(guān)鍵是求出∠COB=60°.4、15π【解析】【分析】首先利用勾股定理求得圓錐的底面半徑,然后利用圓錐的側(cè)面積=π×底面半徑×母線長(zhǎng),把相應(yīng)數(shù)值代入即可求解.【詳解】解:根據(jù)題意,圓錐的底面圓的半徑==3(cm),所以圓錐的側(cè)面積=π×3×5=15π(cm2).故答案為:15π.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),圓錐的側(cè)面積等于“π×底面半徑×母線長(zhǎng)”.5、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問(wèn)題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí).三、解答題1、見(jiàn)解析【解析】【分析】【初步嘗試】如圖1,作∠AOB的角平分線所在直線即為所求;【問(wèn)題聯(lián)想】如圖2,先作MN的線段垂直平分線交MN于點(diǎn)O,再以O(shè)為圓心MO為半徑作圓,與垂直平分線的交點(diǎn)即為等腰直角三角形的頂點(diǎn);【問(wèn)題再解】如圖3先作OB的線段垂直平分線交OB于點(diǎn)N,再以N為圓心NO為半徑作圓,與垂直平分線的交點(diǎn)為M,然后以O(shè)為圓心,OM為半徑作圓與扇形所交的圓弧即為所求.【詳解】【初步嘗試】如圖所示,作∠AOB的角平分線所在直線OP即為所求;【問(wèn)題聯(lián)想】如圖,先作MN的線段垂直平分線交MN于點(diǎn)O,再以O(shè)為圓心MO為半徑作圓,與垂直平分線的交點(diǎn)即為等腰直角三角形的頂點(diǎn);【問(wèn)題再解】如圖,先作OB的線段垂直平分線交OB于點(diǎn)N,再以N為圓心NO為半徑作圓,與垂直平分線的交點(diǎn)為M,然后以O(shè)為圓心,OM為半徑作圓與扇形所交的圓弧CD即為所求.【考點(diǎn)】本題考查了尺規(guī)作圖,角平分線的性質(zhì),線段垂直平分線的性質(zhì),扇形的面積等知識(shí),解決此類(lèi)題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),掌握基本作圖方法.2、(1)4(2)證明見(jiàn)解析(3)【解析】【分析】(1)由正方形ABCD的性質(zhì),可得到△ABM為直角三角形,再由E為BM中點(diǎn),得到BM=2AE,最后由勾股定理求得AB的長(zhǎng)度;(2)過(guò)點(diǎn)A作AY⊥BH于點(diǎn)Y,由EG∥BC,CE=GE,F(xiàn)為BE中點(diǎn),可得△GEF≌△CBF,從而得到△BCE為等腰三角形,再根據(jù)角的關(guān)系,易得∠ECG+∠ECH=∠BCD=45°,得到△HFC為等腰直角三角形,再根據(jù)△ABY≌△BCF,得到BM=CF,AY=BF,從而轉(zhuǎn)化得到結(jié)論;(3)當(dāng)P、D重合時(shí)得到最大面積,以B為原點(diǎn)建立直角坐標(biāo)系,求出坐標(biāo)和表達(dá)式,聯(lián)立方程組求解,即可得出答案.(1)解:∵四邊形ABCD為正方形,且DM=3AM,∴∠BAM=90°,AD=AB=4AM,∴△ABM為直角三角形,∵E為BM的中點(diǎn),,∴BM=2AE=,在Rt△ABM中,設(shè)AM=x,則AB=4x,∴,解得,∴AB=4;(2)過(guò)點(diǎn)A作AY⊥BH于點(diǎn)Y,∵EG//BC,CE=GE,∴∠G=∠BCG=∠ECG,∵F為BE的中點(diǎn),∴△GEF≌△CBF(AAS),∴GE=BC,△BCE為等腰三角形,∴CF⊥BE,∠CFE=90°;∵∠ECH+∠MNH=90°,∠MNH=∠CND,∠CND+∠NCD=90°,∴∠ECH=∠NCD,∴∠ECG+∠ECH=∠BCD=45°,∴△HFC為等腰直角三角形,∴CF=HF;∵∠ABE+∠CBE=90°,∠CBE+∠BCF=90°,∴∠ABE=∠BCF,∵AB=BC,∠AYB=∠BFC=90°,∴△ABY≌△BCF(AAS),∴BY=CF,AY=BF,∴BY=HF∴BY-FY=HF-FY∴BF=HY=AY,∴△AHY是等腰直角三角形,∴,∴,∴;(3)∵∠BQC=90°,∴點(diǎn)Q在以BC為直徑的半圓弧上運(yùn)動(dòng),當(dāng)P點(diǎn)與D點(diǎn)重合時(shí),此時(shí)Q點(diǎn)離BC最遠(yuǎn),∴△QBC和△IBC面積最大,∴此時(shí)△BCT面積最大;∵CQ⊥BP,∴△CBQ為等腰直角三角形,由翻折可得,△CBI為等腰直角三角形,建立如圖直角坐標(biāo)系,作RS⊥BC,TV⊥BC,由(1)中結(jié)論可知:B(0,0),C(4,0),I(2,),∵BI=3RI,BC=4BK,∴,解得RS=,∴R,K(1,0),∴直線KI解析式為:,直線CR解析式為:,聯(lián)立,解得,即T,∴.【考點(diǎn)】本題屬于四邊形綜合題,考查正方形的性質(zhì)、全等三角形證明、翻折問(wèn)題、等腰三角形的性質(zhì)等,熟練掌握每個(gè)性質(zhì)的核心內(nèi)容,理清相互之間的聯(lián)系,屬于壓軸題.3、(1);(2);(3)【解析】【分析】(1)由拋物線的對(duì)稱(chēng)軸為直線,即可求得點(diǎn)E的坐標(biāo);在y=ax2﹣3ax﹣4a(a<0)令y=0可得關(guān)于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點(diǎn)A的坐標(biāo);(2)如圖1,設(shè)⊙E與直線BC相切于點(diǎn)D,連接DE,則DE⊥BC,結(jié)合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關(guān)于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質(zhì)和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標(biāo)分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點(diǎn)N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達(dá)出MN的長(zhǎng)度,結(jié)合MN=CM即可列出關(guān)于m的方程,解方程即可求得對(duì)應(yīng)的m的值,從而得到對(duì)應(yīng)的點(diǎn)Q的坐標(biāo).【詳解】解:(1)∵對(duì)稱(chēng)軸x=,∴點(diǎn)E坐標(biāo)(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點(diǎn)A坐標(biāo)(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設(shè)⊙E與直線BC相切于點(diǎn)D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物線解析式為y=.(3)如圖②中,由題意∠M′CN=∠NCB,∵M(jìn)N∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(0,3),∴直線BC解析式為y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①當(dāng)N在直線BC上方時(shí),﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍棄),∴Q1(,0).②當(dāng)N在直線BC下方時(shí),(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍棄),∴Q2(,0),綜上所述:點(diǎn)Q坐標(biāo)為(,0)或(,0).【考點(diǎn)】本題是一道二次函數(shù)與幾何及銳角三角函數(shù)綜合的題,解題的要點(diǎn)是:(1)熟悉二次函數(shù)的對(duì)稱(chēng)軸方程及二次函數(shù)與一元二次方程的關(guān)系是解第1小題的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論