難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步訓(xùn)練試題(含解析)_第1頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步訓(xùn)練試題(含解析)_第2頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步訓(xùn)練試題(含解析)_第3頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步訓(xùn)練試題(含解析)_第4頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步訓(xùn)練試題(含解析)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖為了測(cè)量B點(diǎn)到河對(duì)面的目標(biāo)A之間的距離,在B點(diǎn)同側(cè)選擇了一點(diǎn)C,測(cè)得∠ABC=65°,∠ACB=35°,然后在M處立了標(biāo)桿,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以測(cè)得MB的長(zhǎng)就是A,B兩點(diǎn)間的距離,這里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA2、如圖,銳角△ABC的兩條高BD、CE相交于點(diǎn)O,且CE=BD,若∠CBD=20°,則∠A的度數(shù)為()A.20° B.40° C.60° D.70°3、如圖,△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)P在AB上,過點(diǎn)P作PE⊥AC,垂足為E,延長(zhǎng)BC至點(diǎn)Q,使CQ=PA,連接PQ交AC于點(diǎn)D,則DE的長(zhǎng)為()A.1 B.1.8 C.2 D.2.54、如圖,若,則的理由是(

)A.SAS B.AAS C.ASA D.HL5、如圖,△ABC的三邊AB,BC,CA長(zhǎng)分別是20,30,40,其三條角平分線將△ABC分為三個(gè)三角形,則S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,,若,則到的距離為_________.2、如圖,的三邊的長(zhǎng)分別為,其三條角平分線交于點(diǎn),則=______.3、如圖,在和中,點(diǎn)B、E、C、F在同一條直線上,且,,請(qǐng)你再添加一個(gè)適當(dāng)?shù)臈l件:________________,使.4、如圖,在和中,,,直線交于點(diǎn)M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號(hào)).5、已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,已知:AO=BO,OC=OD.求證:∠ADC=∠BCD.2、如圖,已知,.求證:.3、如圖1,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊三角形ABC的邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s.(1)連接AQ、CP交于點(diǎn)M,則在P,Q運(yùn)動(dòng)的過程中,證明≌;(2)會(huì)發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);(3)P、Q運(yùn)動(dòng)幾秒時(shí),是直角三角形?(4)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則變化嗎?若變化說明理由,若不變,則求出它的度數(shù)。4、如圖,在五邊形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線.(1)求證:△ABE≌△DCE;(2)當(dāng)∠A=80°,∠ABC=140°,時(shí),∠AED=_________度(直接填空).5、在中,,,為直線上一點(diǎn),連接,過點(diǎn)作交于點(diǎn),交于點(diǎn),在直線上截取,連接.(1)當(dāng)點(diǎn),都在線段上時(shí),如圖①,求證:;(2)當(dāng)點(diǎn)在線段的延長(zhǎng)線上,點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖②;當(dāng)點(diǎn)在線段的延長(zhǎng)線上,點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖③,直接寫出線段,,之間的數(shù)量關(guān)系,不需要證明.-參考答案-一、單選題1、D【解析】【分析】利用全等三角形的判定方法進(jìn)行分析即可.【詳解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故選:D.【考點(diǎn)】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.2、B【解析】【分析】由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可證Rt△BEC≌Rt△CDB(HL),得出∠BCD=∠CBE=70°即可.【詳解】解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故選:B.【考點(diǎn)】本題考查三角形高的定義,三角形全等判定與性質(zhì),三角形內(nèi)角和公式,掌握三角形高的定義,三角形全等判定與性質(zhì),三角形內(nèi)角和公式是解題關(guān)鍵.3、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點(diǎn)】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)兩直角三角形全等的判定定理HL推出即可.【詳解】解:∠B=∠C=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故選:D.【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.5、C【解析】【分析】過點(diǎn)作于點(diǎn),作于點(diǎn),作于點(diǎn),先根據(jù)角平分線的性質(zhì)可得,再根據(jù)三角形的面積公式即可得.【詳解】解:如圖,過點(diǎn)作于點(diǎn),作于點(diǎn),作于點(diǎn),是的三條角平分線,,,故選:C.【考點(diǎn)】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)是解題關(guān)鍵.二、填空題1、4【解析】【分析】過P點(diǎn)作PE⊥OB于E,根據(jù)角平分線的性質(zhì)定理可得PE=PD,即可求解.【詳解】解:如圖,過P點(diǎn)作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距離是4,故答案為:4.【考點(diǎn)】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)定理是解題的關(guān)鍵.2、【解析】【分析】首先過點(diǎn)O作OD⊥AB于點(diǎn)D,作OE⊥AC于點(diǎn)E,作OF⊥BC于點(diǎn)F,由OA,OB,OC是△ABC的三條角平分線,根據(jù)角平分線的性質(zhì),可得OD=OE=OF,又由△ABC的三邊AB、BC、CA長(zhǎng)分別為40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【詳解】解:過點(diǎn)O作OD⊥AB于點(diǎn)D,作OE⊥AC于點(diǎn)E,作OF⊥BC于點(diǎn)F,∵OA,OB,OC是△ABC的三條角平分線,∴OD=OE=OF,∵△ABC的三邊AB、BC、CA長(zhǎng)分別為40、50、60,∴S△ABO:S△BCO:S△CAO=(AB?OD):(BC?OF):(AC?OE)=AB:BC:AC=40:50:60=.故答案為:.【考點(diǎn)】此題考查了角平分線的性質(zhì).此題難度不大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.3、或或【解析】【分析】根據(jù)全等三角形的判定即可求解.【詳解】解:①根據(jù)定理,即,可得;②根據(jù)定理,即,可得;③若,則,則根據(jù)定理,即可得;綜上所述,添加一個(gè)適當(dāng)?shù)臈l件:或或,故答案為:或或.(答案不唯一)【考點(diǎn)】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解題的關(guān)鍵.4、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對(duì)應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯(cuò)誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對(duì)應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯(cuò)誤;正確的個(gè)數(shù)有3個(gè);故答案為:①②③.【考點(diǎn)】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識(shí),證明三角形全等是解題的關(guān)鍵.5、4.【解析】【分析】過點(diǎn)D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對(duì)的直角邊等于斜邊的一半可求出DF的長(zhǎng),此題得解.【詳解】過點(diǎn)D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點(diǎn)】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對(duì)的直角邊等于斜邊的一半,求出DF的長(zhǎng)是解題的關(guān)鍵.三、解答題1、見解析【解析】【分析】利用“邊角邊”證明△AOD和△BOC全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ADO=∠BCO,根據(jù)等邊對(duì)等角可得∠ODC=∠OCD,然后相減整理即可得證.【詳解】證明:在△AOD和△BOC中,,

∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD.【考點(diǎn)】本題考點(diǎn):全等三角形的判定與性質(zhì).2、見詳解.【解析】【分析】根據(jù)SSS定理推出△ADB≌△BCA即可證明.【詳解】證明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定,能正確進(jìn)行推理證明全等是解此題的關(guān)鍵.3、(1)見解析;(2)∠CMQ=60°,不變;(3)當(dāng)?shù)诿牖虻诿霑r(shí),△PBQ為直角三角形;(4)∠CMQ=120°,不變.【解析】【分析】(1)利用SAS可證全等;(2)先證△ABQ≌△CAP,得出∠BAQ=∠ACP,通過角度轉(zhuǎn)化,可得出∠CMQ=60°;(3)存在2種情況,一種是∠PQB=90°,另一種是∠BPQ=90°,分別根據(jù)直角三角形邊直角的關(guān)系可求得t的值;(4)先證△PBC≌△ACQ,從而得出∠BPC=∠MQC,然后利用角度轉(zhuǎn)化可得出∠CMQ=120°.【詳解】(1)證明:在等邊三角形ABC中,AB=AC,∠B=∠CAP=60°又由題中“點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不變∵等邊三角形中,AB=AC,∠B=∠CAP=60°又由條件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(3)設(shè)時(shí)間為t,則AP=BQ=t,PB=4-t,①當(dāng)∠PQB=90°時(shí),∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②當(dāng)∠BPQ=90°時(shí),∵∠B=60°,∴BQ=2BQ,得t=2(4-t),t=;∴當(dāng)?shù)诿牖虻诿霑r(shí),△PBQ為直角三角形;(4)∠CMQ=120°不變,∵在等邊三角形中,AB=AC,∠B=∠CAP=60°,∴∠PBC=∠ACQ=120°,又由條件得BP=CQ,∴△PBC≌△ACQ(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°-60°=120°.【考點(diǎn)】本題考查動(dòng)點(diǎn)問題中三角形的全等,解題關(guān)鍵是找出圖形中的全等三角形,利用全等三角形的性質(zhì)進(jìn)行角度轉(zhuǎn)化,得出需要的結(jié)論.4、(1)見解析;(2)100【解析】【分析】(1)根據(jù)∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,可得∠ABE=∠DCE,∠CBE=∠BCE,推出BE=CE,由此利用SAS證明△ABE≌△DCE;(2)根據(jù)三角形全等的性質(zhì)求出∠D的度數(shù),利用公式求出五邊形的內(nèi)角和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論