版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,已知長方形中,,圓B的半徑為1,圓A與圓B內(nèi)切,則點(diǎn)與圓A的位置關(guān)系是(
)A.點(diǎn)C在圓A外,點(diǎn)D在圓A內(nèi) B.點(diǎn)C在圓A外,點(diǎn)D在圓A外C.點(diǎn)C在圓A上,點(diǎn)D在圓A內(nèi) D.點(diǎn)C在圓A內(nèi),點(diǎn)D在圓A外2、如圖,⊙O的半徑為5,弦AB=8,P是弦AB上的一個(gè)動(dòng)點(diǎn)(不與A,B重合),下列符合條件的OP的值是()A.6.5 B.5.5 C.3.5 D.2.53、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點(diǎn)C作⊙O的切線,交AB的延長線于點(diǎn)D.設(shè)∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°4、已知點(diǎn)在上.則下列命題為真命題的是(
)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦5、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m6、如圖,點(diǎn)B,C,D在⊙O上,若∠BCD=130°,則∠BOD的度數(shù)是()A.50° B.60° C.80° D.100°7、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點(diǎn)P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長是()A.6 B.3 C.2 D.8、如圖,已知是的兩條切線,A,B為切點(diǎn),線段交于點(diǎn)M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個(gè)數(shù)是(
)A.1 B.2 C.3 D.49、已知點(diǎn)在半徑為8的外,則(
)A. B. C. D.10、如圖,矩形中,,,,分別是,邊上的動(dòng)點(diǎn),,以為直徑的與交于點(diǎn),.則的最大值為(
).A.48 B.45 C.42 D.40第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在的方格紙中,每個(gè)小方格都是邊長為1的正方形,其中A、B、C為格點(diǎn),作的外接圓,則的長等于_____.2、如圖,在中,點(diǎn)是的中點(diǎn),連接交弦于點(diǎn),若,,則的長是______.3、已知的半徑為,直線與相交,則圓心到直線距離的取值范圍是__________.4、如圖,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,分別以點(diǎn)A,C為圓心,AO長為半徑畫弧,分別交AB,CD于點(diǎn)E,F(xiàn).若BD=4,∠CAB=36°,則圖中陰影部分的面積為___________.(結(jié)果保留π).5、已知圓錐的高為4cm,母線長為5cm,則圓錐的側(cè)面積為_____cm2.6、如圖,在中,,,以點(diǎn)為圓心、為半徑的圓交于點(diǎn),則弧AD的度數(shù)為________度.7、如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(20,0),點(diǎn)B的坐標(biāo)是(16,0),點(diǎn)C、D在以O(shè)A為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點(diǎn)C的坐標(biāo)為_____.8、如圖,分別以等邊三角形的每個(gè)頂點(diǎn)為圓心、以邊長為半徑,在另兩個(gè)頂點(diǎn)間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長為,則勒洛三角形的周長為_____.9、如圖,正方形ABCD,邊長為4,點(diǎn)P和點(diǎn)Q在正方形的邊上運(yùn)動(dòng),且PQ=4,若點(diǎn)P從點(diǎn)B出發(fā)沿B→C→D→A的路線向點(diǎn)A運(yùn)動(dòng),到點(diǎn)A停止運(yùn)動(dòng);點(diǎn)Q從點(diǎn)A出發(fā),沿A→B→C→D的路線向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D停止運(yùn)動(dòng).它們同時(shí)出發(fā),且運(yùn)動(dòng)速度相同,則在運(yùn)動(dòng)過程中PQ的中點(diǎn)O所經(jīng)過的路徑長為_____.10、一個(gè)扇形的弧長是,面積是,則這個(gè)扇形的圓心角是___度.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,四邊形ABCD是平行四邊形,點(diǎn)A,B,D均在圓上.請(qǐng)僅用無刻度的直尺分別下列要求畫圖.(1)在圖①中,若AB是直徑,CD與圓相切,畫出圓心;(2)在圖②中,若CB,CD均與圓相切,畫出圓心.2、如圖,內(nèi)接于,,,則的直徑等于多少?3、用反證法證明:一條線段只有一個(gè)中點(diǎn).4、如圖,AB為⊙O的直徑,C、D為⊙O上的兩個(gè)點(diǎn),==,連接AD,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E.(1)求證:DE是⊙O的切線.(2)若直徑AB=6,求AD的長.5、已知:如圖,在⊙O中,AB為弦,C、D兩點(diǎn)在AB上,且AC=BD.求證:.-參考答案-一、單選題1、C【解析】【分析】根據(jù)內(nèi)切得出圓A的半徑,再判斷點(diǎn)D、點(diǎn)E到圓心的距離即可【詳解】∵圓A與圓B內(nèi)切,,圓B的半徑為1∴圓A的半徑為5∵<5∴點(diǎn)D在圓A內(nèi)在Rt△ABC中,∴點(diǎn)C在圓A上故選:C【考點(diǎn)】本題考查點(diǎn)與圓的位置關(guān)系、圓與圓的位置關(guān)系、勾股定理,熟練掌握點(diǎn)與圓的位置關(guān)系是關(guān)鍵2、C【解析】【分析】連接OB,作OM⊥AB與M.根據(jù)垂徑定理和勾股定理,求出OP的取值范圍即可判斷.【詳解】解:連接OB,作OM⊥AB與M.∵OM⊥AB,∴AM=BM=AB=4,在直角△OBM中,∵OB=5,BM=4,∴.∴,故選:C.【考點(diǎn)】本題考查了垂徑定理、勾股定理,常把半弦長,半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解.3、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點(diǎn)】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握?qǐng)A的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).4、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對(duì)各項(xiàng)判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當(dāng)弦垂直平分半徑時(shí),半徑平分弦,所以是假命題,故選:B.【考點(diǎn)】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí),解答的關(guān)鍵是會(huì)利用所學(xué)的知識(shí)進(jìn)行推理證明命題的真假.5、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點(diǎn)】本題考查了垂徑定理和勾股定理等知識(shí);熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.6、D【解析】【分析】首先圓上取一點(diǎn)A,連接AB,AD,根據(jù)圓的內(nèi)接四邊形的性質(zhì),即可得∠BAD+∠BCD=180°,即可求得∠BAD的度數(shù),再根據(jù)圓周角的性質(zhì),即可求得答案.【詳解】圓上取一點(diǎn)A,連接AB,AD,∵點(diǎn)A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故選D.【考點(diǎn)】此題考查了圓周角的性質(zhì)與圓的內(nèi)接四邊形的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.7、C【解析】【分析】如圖,過作于過作于先證明三點(diǎn)共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點(diǎn)共線,為等邊三角形,四邊形是矩形,故選:【考點(diǎn)】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識(shí)是解題的關(guān)鍵.8、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點(diǎn),連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯(cuò)誤,綜上:正確的說法是個(gè),故選C.【考點(diǎn)】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識(shí)是解題的關(guān)鍵.9、A【解析】【分析】根據(jù)點(diǎn)P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點(diǎn)P在圓O的外部,∴點(diǎn)P到圓心O的距離大于8,故選:A.【考點(diǎn)】本題主要考查點(diǎn)與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點(diǎn)與圓的位置關(guān)系的方法.10、A【解析】【分析】過A點(diǎn)作AH⊥BD于H,連接OM,如圖,先利用勾股定理計(jì)算出BD=75,則利用面積法可計(jì)算出AH=36,再證明點(diǎn)O在AH上時(shí),OH最短,此時(shí)HM有最大值,最大值為24,然后根據(jù)垂徑定理可判斷MN的最大值.【詳解】解:過A點(diǎn)作AH⊥BD于H,連接OM,如圖,在Rt△ABD中,BD=,∵×AH×BD=×AD×AB,∴AH==36,∵⊙O的半徑為26,∴點(diǎn)O在AH上時(shí),OH最短,∵HM=,∴此時(shí)HM有最大值,最大值為:24,∵OH⊥MN,∴MN=2MH,∴MN的最大值為2×24=48.故選:A.【考點(diǎn)】本題考查了垂徑定理:直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。部疾榱司匦蔚男再|(zhì)和勾股定理.二、填空題1、【解析】【分析】由AB、BC、AC長可推導(dǎo)出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計(jì)算出OB的長就能利用弧長公式求出的長了.【詳解】∵每個(gè)小方格都是邊長為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長為:=故答案為:.【考點(diǎn)】本題考查了弧長的計(jì)算以及圓周角定理,解題關(guān)鍵是利用三角形三邊長通過勾股定理逆定理得出△ACB為等腰直角三角形.2、8.【解析】【分析】連結(jié)OA,OB,點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結(jié)OA,OB,∵點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點(diǎn)】本題考查垂徑定理的推論,勾股定理,線段中點(diǎn)定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對(duì)的弦,勾股定理,線段中點(diǎn)定義是解題關(guān)鍵.3、【解析】【分析】根據(jù)直線AB和圓相交,則圓心到直線的距離小于圓的半徑即可得問題答案.【詳解】∵⊙O的半徑為5,直線AB與⊙O相交,∴圓心到直線AB的距離小于圓的半徑,即0≤d<5;故答案為:0≤d<5.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系;熟記直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系是解決問題的關(guān)鍵.同時(shí)注意圓心到直線的距離應(yīng)是非負(fù)數(shù).4、【解析】【分析】利用矩形的性質(zhì)求得OA=OC=OB=OD=2,再利用扇形的面積公式求解即可.【詳解】解:∵矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴,故答案為:.【考點(diǎn)】本題考查了矩形的性質(zhì),扇形的面積等知識(shí),正確的識(shí)別圖形是解題的關(guān)鍵.5、15π【解析】【分析】首先利用勾股定理求得圓錐的底面半徑,然后利用圓錐的側(cè)面積=π×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.【詳解】解:根據(jù)題意,圓錐的底面圓的半徑==3(cm),所以圓錐的側(cè)面積=π×3×5=15π(cm2).故答案為:15π.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長,圓錐的側(cè)面積等于“π×底面半徑×母線長”.6、【解析】【分析】由三角形內(nèi)角和得∠A=90°﹣∠B=65°.再由AC=CD,∠ACD度數(shù)可求,可解.【詳解】連接CD.∵∠ACB=90°,∠B=25°,∴∠A=90°﹣∠B=65°.∵CA=CD,∴∠A=∠CDA=65°,∴∠ACD=180°﹣2∠A=50°,∴弧AD的度數(shù)是50度.【考點(diǎn)】本題考查了直角三角形,三角形內(nèi)角和定理和圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.7、(2,6)【解析】【分析】此題涉及的知識(shí)點(diǎn)是平面直角坐標(biāo)系圖像性質(zhì)的綜合應(yīng)用.過點(diǎn)M作MF⊥CD于F,過C作CE⊥OA于E,在Rt△CMF中,根據(jù)勾股定理即可求得MF與EM,進(jìn)而就可求得OE,CE的長,從而求得C的坐標(biāo).【詳解】∵四邊形OCDB是平行四邊形,點(diǎn)B的坐標(biāo)為(16,0),CD∥OA,CD=OB=16,過點(diǎn)M作MF⊥CD于F,則過C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM?ME=OM?CF=10?8=2,連接MC,∴在Rt△CMF中,∴點(diǎn)C的坐標(biāo)為(2,6).故答案為(2,6).【考點(diǎn)】此題重點(diǎn)考察學(xué)生對(duì)坐標(biāo)與圖形性質(zhì)的實(shí)際應(yīng)用,勾股定理,注意數(shù)形結(jié)合思想在解題的關(guān)鍵.8、πa【解析】【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長公式求出的長=的長=的長=,那么勒洛三角形的周長為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長=的長=的長=,∴勒洛三角形的周長為故答案為:πa.【考點(diǎn)】本題考查了弧長公式,解題的關(guān)鍵是掌握(弧長為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).9、【解析】【分析】【詳解】解:畫出點(diǎn)O運(yùn)動(dòng)的軌跡,如圖虛線部分,則點(diǎn)P從B到A的運(yùn)動(dòng)過程中,PQ的中點(diǎn)O所經(jīng)過的路線長等于3π,故答案為:3π.10、150【解析】【分析】根據(jù)弧長公式計(jì)算.【詳解】根據(jù)扇形的面積公式可得:,解得r=24cm,再根據(jù)弧長公式,解得.故答案為:150.【考點(diǎn)】本題考查了弧長的計(jì)算及扇形面積的計(jì)算,要記熟公式:扇形的面積公式,弧長公式.三、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)延長CB交圓于一點(diǎn),把這點(diǎn)與點(diǎn)D連接,與AB交點(diǎn)即為圓心;(2)連接AC、BD交于點(diǎn)G,AC交圓于點(diǎn)E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O即可.【詳解】(1)如圖1所示,延長CB交圓于點(diǎn)E,連接DE,與AB交點(diǎn)即為圓心;由已知可得∠A+∠DBA=90°,∠EBA=∠C=∠A,故∠EBA+∠DBA=90°,DE為直徑;(2)如圖2所示,連接AC、BD交于點(diǎn)G,AC交圓于點(diǎn)E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O.點(diǎn)即為所求.說明:由已知可得,△ADB為等邊三角形,由作圖可知,AE為直徑,DF⊥BC,可得,F(xiàn)是BC中點(diǎn),進(jìn)而得出H是AD中點(diǎn),BH⊥AD,BH過圓心;【考點(diǎn)】本題考查了無刻度直尺作圖,解題關(guān)鍵是準(zhǔn)確理解題意,根據(jù)圓的有關(guān)性質(zhì)進(jìn)行作圖.2、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△OBC為等邊三角形,從而得到OB=6.【詳解】解:連接OB、OC,如圖,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC為等邊三角形,∴OB=BC=6,∴⊙O的直徑等于12.故答案為:12.【考點(diǎn)】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心.也考查了圓周角定理,掌握這些知識(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年糖尿病患者的安全運(yùn)動(dòng)處方與實(shí)施要點(diǎn)
- 金屬船體制造工操作技能知識(shí)考核試卷含答案
- 湖鹽穿爆工班組協(xié)作知識(shí)考核試卷含答案
- 運(yùn)動(dòng)營養(yǎng)師6S執(zhí)行考核試卷含答案
- 我國上市公司智力資本信息披露的市場效應(yīng):理論、實(shí)證與案例研究
- 老年糖尿病多重用藥的相互作用管理
- 半導(dǎo)體分立器件和集成電路微系統(tǒng)組裝工8S執(zhí)行考核試卷含答案
- 食用菌生產(chǎn)工崗前安全實(shí)踐考核試卷含答案
- 玻璃鋼制品工復(fù)試強(qiáng)化考核試卷含答案
- 2026廣東深圳大學(xué)土木與交通工程學(xué)院周英武特聘教授團(tuán)隊(duì)招聘研究助理1人備考題庫完整參考答案詳解
- 2025年七年級(jí)(上冊(cè))道德與法治期末模擬考試卷及答案(共三套)
- 復(fù)旦大學(xué)-2025年城市定制型商業(yè)醫(yī)療保險(xiǎn)(惠民保)知識(shí)圖譜
- DB36-T 2070-2024 疼痛綜合評(píng)估規(guī)范
- 山東省淄博濱州市2025屆高三下學(xué)期第一次模擬-西班牙語試題(含答案)
- 2025年國家公務(wù)員考試《申論》題(行政執(zhí)法卷)及參考答案
- 砌筑施工安全教育培訓(xùn)課件
- 上海市中考數(shù)學(xué)百題基礎(chǔ)練習(xí)
- 客運(yùn)索道施工方案
- GB/T 7122-2025高強(qiáng)度膠粘劑剝離強(qiáng)度的測(cè)定浮輥法
- 人教版七年級(jí)數(shù)學(xué)上冊(cè) 第四章《整式的加減》單元測(cè)試卷(含答案)
- 五常市水稻種植技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論