2025屆西藏林芝地區(qū)墨脫縣中考數(shù)學五模試卷含解析_第1頁
2025屆西藏林芝地區(qū)墨脫縣中考數(shù)學五模試卷含解析_第2頁
2025屆西藏林芝地區(qū)墨脫縣中考數(shù)學五模試卷含解析_第3頁
2025屆西藏林芝地區(qū)墨脫縣中考數(shù)學五模試卷含解析_第4頁
2025屆西藏林芝地區(qū)墨脫縣中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆西藏林芝地區(qū)墨脫縣中考數(shù)學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某校120名學生某一周用于閱讀課外書籍的時間的頻率分布直方圖如圖所示.其中閱讀時間是8~10小時的頻數(shù)和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.252.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π3.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.4.如圖,矩形OABC有兩邊在坐標軸上,點D、E分別為AB、BC的中點,反比例函數(shù)y=(x<0)的圖象經(jīng)過點D、E.若△BDE的面積為1,則k的值是()A.﹣8 B.﹣4 C.4 D.85.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點O都落在直線MN上,直線MN∥AB,則點O是△ABC的()A.外心 B.內心 C.三條中線的交點 D.三條高的交點6.下列計算正確的是()A.+= B.﹣= C.×=6 D.=47.在平面直角坐標系中,已知點A(﹣4,2),B(﹣6,﹣4),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)8.如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為A. B.3 C.1 D.9.下列圖形是中心對稱圖形的是()A. B. C. D.10.下列代數(shù)運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x511.把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)212.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉過的角度是()A.60° B.45° C.15° D.90°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分式與的最簡公分母是_____.14.在平面直角坐標系xOy中,位于第一象限內的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.15.分解因式=________,=__________.16.因式分解:a3﹣2a2b+ab2=_____.17.如圖所示,四邊形ABCD中,,對角線AC、BD交于點E,且,,若,,則CE的長為_____.18.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“綠水青山就是金山銀山”,北京市民積極參與義務植樹活動.小武同學為了了解自己小區(qū)300戶家庭在2018年4月份義務植樹的數(shù)量,進行了抽樣調查,隨即抽取了其中30戶家庭,收集的數(shù)據(jù)如下(單位:棵):112323233433433534344545343456(1)對以上數(shù)據(jù)進行整理、描述和分析:①繪制如下的統(tǒng)計圖,請補充完整;②這30戶家庭2018年4月份義務植樹數(shù)量的平均數(shù)是______,眾數(shù)是______;(2)“互聯(lián)網(wǎng)+全民義務植樹”是新時代首都全民義務植樹組織形式和盡責方式的一大創(chuàng)新,2018年首次推出義務植樹網(wǎng)上預約服務,小武同學所調查的這30戶家庭中有7戶家庭采用了網(wǎng)上預約義務植樹這種方式,由此可以估計該小區(qū)采用這種形式的家庭有______戶.20.(6分)某學校為弘揚中國傳統(tǒng)詩詞文化,在九年級隨機抽查了若干名學生進行測試,然后把測試結果分為4個等級;A、B、C、D,對應的成績分別是9分、8分、7分、6分,并將統(tǒng)計結果繪制成兩幅如圖所示的統(tǒng)計圖.請結合圖中的信息解答下列問題:(1)本次抽查測試的學生人數(shù)為,圖①中的a的值為;(2)求統(tǒng)計所抽查測試學生成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).21.(6分)如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=1.求⊙O的面積;若D為⊙O上一點,且△ABD為等腰三角形,求CD的長.22.(8分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.23.(8分)地下停車場的設計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)24.(10分)我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)25.(10分)某街道需要鋪設管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數(shù)關系圖象.(1)直接寫出點的坐標;(2)求線段所對應的函數(shù)解析式,并寫出自變量的取值范圍;(3)直接寫出乙隊工作25天后剩余管線的長度.26.(12分)閱讀材料:小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(其中均為整數(shù)),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當均為正整數(shù)時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結論,找一組正整數(shù),填空:+=(+)2;(3)若,且均為正整數(shù),求的值.27.(12分)某市政府大力支持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量Y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+1.設李明每月獲得利潤為W(元),當銷售單價定為多少元時,每月獲得利潤最大?根據(jù)物價部門規(guī)定,這種護眼臺燈不得高于32元,如果李明想要每月獲得的利潤2000元,那么銷售單價應定為多少元?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:根據(jù)頻率分布直方圖中的數(shù)據(jù)信息和被調查學生總數(shù)為120進行計算即可作出判斷.詳解:由頻率分布直方圖可知:一周內用于閱讀的時間在8-10小時這組的:頻率:組距=0.125,而組距為2,∴一周內用于閱讀的時間在8-10小時這組的頻率=0.125×2=0.25,又∵被調查學生總數(shù)為120人,∴一周內用于閱讀的時間在8-10小時這組的頻數(shù)=120×0.25=30.綜上所述,選項D中數(shù)據(jù)正確.故選D.點睛:本題解題的關鍵有兩點:(1)要看清,縱軸上的數(shù)據(jù)是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數(shù)、頻率和總數(shù)之間的關系.2、D【解析】

根據(jù)三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.本題主要考查由三視圖判斷幾何體,解題的關鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關計算.3、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.4、B【解析】

根據(jù)反比例函數(shù)的圖象和性質結合矩形和三角形面積解答.【詳解】解:作,連接.∵四邊形AHEB,四邊形ECOH都是矩形,BE=EC,∴故選B.此題重點考查學生對反比例函數(shù)圖象和性質的理解,熟練掌握反比例函數(shù)圖象和性質是解題的關鍵.5、B【解析】

利用平行線間的距離相等,可知點到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點作于,作于E,作于.由題意可知:,,,∴,∴圖中的點是三角形三個內角的平分線的交點,點是的內心,故選B.本題考查平行線間的距離,角平分線定理,三角形的內心,解題的關鍵是判斷出.6、B【解析】

根據(jù)同類二次根式才能合并可對A進行判斷;根據(jù)二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據(jù)二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.7、D【解析】

根據(jù)在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k,即可求得答案.【詳解】∵點A(-4,2),B(-6,-4),以原點O為位似中心,相似比為,把△ABO縮小,∴點A的對應點A′的坐標是:(-2,1)或(2,-1).故選D.此題考查了位似圖形與坐標的關系.此題比較簡單,注意在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標比等于±k.8、A【解析】

首先利用勾股定理計算出AC的長,再根據(jù)折疊可得△DEC≌△D′EC,設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根據(jù)勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【詳解】∵AB=3,AD=4,∴DC=3∴根據(jù)勾股定理得AC=5根據(jù)折疊可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E設ED=x,則D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故選A.9、B【解析】

根據(jù)中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!10、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.11、A【解析】

根據(jù)“上加下減”的原則進行解答即可.【詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是:y=﹣2x2+1.故選A.本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關鍵.12、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉過的角度是15°.故選C.考點:解直角三角形的應用.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3a2b【解析】

利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.本題考查最簡公分母,解題的關鍵是掌握求最簡公分母的方法.14、.【解析】

依據(jù)點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規(guī)律.15、【解析】此題考查因式分解答案點評:利用提公因式、平方差公式、完全平方公式分解因式16、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.17、【解析】

此題有等腰三角形,所以可作BH⊥CD,交EC于點G,利用三線合一性質及鄰補角互補可得∠BGD=120°,根據(jù)四邊形內角和360°,得到∠ABG+∠ADG=180°.此時再延長GB至K,使AK=AG,構造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設,則,,∴,∴,在中,,解得,,當時,,所以,∴,,,作,設,,,,,∴,,∴,則,故答案為本題主要考查了等腰三角形的性質及等邊三角形、全等三角形的判定和性質以及勾股定理的運用,綜合性較強,正確作出輔助線是解題的關鍵.18、1【解析】原方程為3x2?6x+1=0,二次項系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)3.4棵、3棵;(2)1.【解析】

(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,據(jù)此補全圖形可得;②根據(jù)平均數(shù)和眾數(shù)的定義求解可得;(2)用總戶數(shù)乘以樣本中采用了網(wǎng)上預約義務植樹這種方式的戶數(shù)所占比例可得.【詳解】解:(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,補全圖形如下:②這30戶家庭2018年4月份義務植樹數(shù)量的平均數(shù)是(棵),眾數(shù)為3棵,故答案為:3.4棵、3棵;(2)估計該小區(qū)采用這種形式的家庭有戶,故答案為:1.此題考查條形統(tǒng)計圖,加權平均數(shù),眾數(shù),解題關鍵在于利用樣本估計總體.20、(1)50、2;(2)平均數(shù)是7.11;眾數(shù)是1;中位數(shù)是1.【解析】

(1)根據(jù)A等級人數(shù)及其百分比可得總人數(shù),用C等級人數(shù)除以總人數(shù)可得a的值;(2)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義計算可得.【詳解】(1)本次抽查測試的學生人數(shù)為14÷21%=50人,a%=×100%=2%,即a=2.故答案為50、2;(2)觀察條形統(tǒng)計圖,平均數(shù)為=7.11.∵在這組數(shù)據(jù)中,1出現(xiàn)了20次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是1.∵將這組數(shù)據(jù)從小到大的順序排列,其中處于中間的兩個數(shù)都是1,∴=1,∴這組數(shù)據(jù)的中位數(shù)是1.本題考查了眾數(shù)、平均數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).21、(1)25π;(2)CD1=,CD2=7【解析】分析:(1)利用圓周角定理的推論得到∠C是直角,利用勾股定理求出直徑AB,再利用圓的面積公式即可得到答案;(2)分點D在上半圓中點與點D在下半圓中點這兩種情況進行計算即可.詳解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵AB是⊙O的直徑,∴AC=8,BC=1,∴AB=10,∴⊙O的面積=π×52=25π.(2)有兩種情況:①如圖所示,當點D位于上半圓中點D1時,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足為E,CF⊥OD1垂足為F,可得矩形CEOF,∵CE=,∴OF=CE=,∴,∵=,∴,∴,∴;②如圖所示,當點D位于下半圓中點D2時,同理可求.∴CD1=,CD2=7點睛:本題考查了圓周角定理的推論、勾股定理、矩形的性質等知識.利用分類討論思想并合理構造輔助線是解題的關鍵.22、(1)見解析;(1)1【解析】

(1)根據(jù)角平分線的作圖可得;

(1)由等腰三角形的三線合一,結合E為AB邊的中點證EF為△ABD的中位線可得.【詳解】(1)如圖,射線CF即為所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD為等腰三角形;又CF是頂角∠ACD的平分線,∴CF是底邊AD的中線,即F為AD的中點,∵E是AB的中點,∴EF為△ABD的中位線,∴EF=BD=1.本題主要考查作圖-基本作圖和等腰三角形的性質、中位線定理,熟練掌握等腰三角形的性質、中位線定理是解題的關鍵.23、小亮說的對,CE為2.6m.【解析】

先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.本題主要考查了解直角三角形的應用,主要是正弦、正切概念及運算,解決本題的關鍵把實際問題轉化為數(shù)學問題.24、(1)(2),圖形見解析.【解析】

(1)根據(jù)概率的定義即可求出;(2)先根據(jù)題意列出樹狀圖,再利用概率公式進行求解.【詳解】(1)由題意P(選中的男主持人為甲班)=(2)列出樹狀圖如下∴P(選中的男女主持人均為甲班的)=此題主要考查概率的計算,解題的關鍵是根據(jù)題意列出樹狀圖進行求解.25、(1)(10,7500)(2)直線BC的解析式為y=-250x+10000,自變量x的取值范圍為10≤x≤40.(3)1250米.【解析】

(1)由于前面10天由甲單獨完

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論