版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
【備考期末】金華市中考數(shù)學幾何綜合壓軸題易錯專題一、中考數(shù)學幾何綜合壓軸題1.(操作)如圖①,在矩形中,為對角線上一點(不與點重合),將沿射線方向平移到的位置,的對應(yīng)點為.已知(不需要證明).(探究)過圖①中的點作交延長線于點,連接,其它條件不變,如圖②.求證:.(拓展)將圖②中的沿翻折得到,連接,其它條件不變,如圖③.當最短時,若,,直接寫出的長和此時四邊形的周長.解析:探究:見解析;拓展:四邊形的周長為【分析】探究:證明四邊形EGBC是平行四邊形,推出EG=BC,利用SAS證明三角形全等即可.拓展:如圖3中,連接BD交AC于點O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.由題意四邊形AGFC是平行四邊形,推出GF=AC=,由BF=BF′,可以假設(shè)BF=x,則BG=利用相似三角形的性質(zhì),求出BH,HF′,利用勾股定理求出GF′,再利用二次函數(shù)的性質(zhì),求出GF′的值最小時BF′的值,推出BF′=此時點F′與O重合,由此即可解決問題.【詳解】解:探究:由平移,∴,即又∵,∴四邊形為平行四邊形∴∵,∴∠CBF=∠ACB,∵∴∠AEG=∠ACB,∴∠AEG=∠CBF∴.拓展:如圖3中,連接BD交AC于點O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.∵四邊形ABCD是矩形,∴∠ABC=90°,AB=4,BC=2,∴∵∴,∴由題意四邊形AGFC是平行四邊形,∴GF=AC=,∵BF=BF′,可以假設(shè)BF=x,則BG=∵AC∥GF,∴∠BOK=∠HBF′,∵∠BKO=∠F′HB=90°,∴△F′HB∽△BKO,∴∴∴∴∵>0,∴當時,GF′的值最小,此時點F′與O重合,由對折得:由矩形的性質(zhì)得:四邊形BFCF′是菱形,四邊形BFCF′的周長為,且與互相平分,由勾股定理得:【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),翻折變換,平行四邊形的判定和性質(zhì),相似三角形的判定和性質(zhì),二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造相似三角形解決問題,學會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.2.(1)(問題背景)如圖1,在中,,,D是直線BC上的一點,將線段AD繞點A逆時針旋轉(zhuǎn)90°至AE,連接CE,求證:;(2)(嘗試應(yīng)用)如圖2,在(1)的條件下,延長DE,AC交于點G,交DE于點F.求證:;(3)(拓展創(chuàng)新)如圖3,是內(nèi)一點,,,,直接寫出的面積為_____________.解析:(1)見解析;(2)見解析;(3)【分析】(1)【問題背景】如圖1,根據(jù)SAS證明三角形全等即可.(2)【嘗試應(yīng)用】如圖2,過點D作DK⊥DC交FB的延長線于K.證明△ECG≌△DKF(AAS),推出DF=EG,再證明FG=DE=即可.(3)【拓展創(chuàng)新】如圖3中,過點A作AE⊥AD交BD于E,連接CE.利用全等三角形的性質(zhì)證明CE=BD,CE⊥BD,再根據(jù)三角形面積公式即可求解.【詳解】(1)【問題背景】證明:如圖1,∵,∴,在和中,,∴.(2)【嘗試應(yīng)用】證明:如圖2,過點D作交FB的延長線于K.∵,,∴,∵,,∴,∴,∴,∵,∴,,∴,∵,,∴,∴,在和中,,∴,∴,∵,∴,∴,即.(3)【拓展創(chuàng)新】如圖3中,過點A作交BD于E,連接CE.∵,,∴與都是等腰直角三角形,同法可證,∴,∵,∴,∴.故答案為:.【點睛】本題屬于幾何變換綜合題,考查了等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考壓軸題.3.如圖,在菱形中,,將邊繞點逆時針旋轉(zhuǎn)至,記旋轉(zhuǎn)角為.過點作于點,過點作直線于點,連接.(探索發(fā)現(xiàn))填空:當時,=.的值是(驗證猜想)當時,中的結(jié)論是否仍然成立?若成立,請僅就圖的情形進行證明;若不成立,請說明理由;(拓展應(yīng)用)在的條件下,若,當是等腰直角三角形時,請直接寫出線段的長.解析:(1),;(2)當時,(1)中的結(jié)論仍然成立,理由見解析;(3)線段的長為或.【分析】當時,點B′與點C重合,,由四邊形ABCD為菱形,可求∠ABE=90°,由,可求∠ABC=60°,=30°,由DF⊥BC,DC∥AB,∠FDC=∠EBC=30°,由sin∠FDC=sin∠EBC=,可得CF=CE,可求∠CEF=∠FDC=30°即可;當時,中的結(jié)論仍然成立.先求,再證.最后證即可;連接,交于點.先求,..分兩種情況:如圖先求,再證△B′BD∽△EBF,可得,如圖先求.再證△B′BD∽△EBF,.【詳解】當時,點B′與點C重合,∵,四邊形ABCD為菱形,CD∥AB,∴⊥AB,∴∠ABE=90°,∵,AD∥BC,∴∠ABC=180°-∠BAD=180°-120°=60°,∴=∠ABE-∠ABC=90°-60°=30°,∵DF⊥BC,DC∥AB,∴DF⊥AD,∠CDA=180°-∠BAD=60°,∴∠FDC=90°-∠CDA=30°,∠FCD=90°-∠FDC=60°,∴∠FDC=∠EBC=30°,∴sin∠FDC=sin∠EBC=,∵DC=BC,∴CF=CE,∴∠CFE=∠CEF=∠FCD=30°,∴∠CEF=∠FDC=30°,∴DF=FE,∵cos∠FDC=,∴=,故答案為,.當時,中的結(jié)論仍然成立.證明:如圖,連接.,,.,...,即.,,..,線段的長為或.連接,交于點.,,,,∵DE=BE,∠DEB=90°,∴∠EDB=∠EBD=45°,.,∠B′EB=90°,,.,..分兩種情況:如圖,,∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.如圖,.∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.綜上所述,線段的長為或.【點睛】本題考查圖形旋轉(zhuǎn)變換,菱形性質(zhì),銳角三角函數(shù)值,等腰直角三角形性質(zhì),三角形相似判定與性質(zhì),掌握圖形旋轉(zhuǎn)變換,菱形性質(zhì),銳角三角函數(shù)值,等腰直角三角形性質(zhì),三角形相似判定與性質(zhì)是解題關(guān)鍵.4.(問題原型)如圖,在矩形中,對角線、交于點,以為直徑作.求證:點、在上.請完成上面問題的證明,寫出完整的證明過程.(發(fā)現(xiàn)結(jié)論)矩形的四個頂點都在以該矩形對角線的交點為圓心,對角線的長為直徑的圓上.(結(jié)論應(yīng)用)如圖,已知線段,以線段為對角線構(gòu)造矩形.求矩形面積的最大值.(拓展延伸)如圖,在正方形中,,點、分別為邊、的中點,以線段為對角線構(gòu)造矩形,矩形的邊與正方形的對角線交于、兩點,當?shù)拈L最大時,矩形的面積為_____________________解析:問題原型:見解析;結(jié)論應(yīng)用:見解析;發(fā)現(xiàn)結(jié)論:2;拓展延伸:2【分析】問題原型:運用矩形對角線互相平分且相等,即可求證四點共圓;結(jié)論應(yīng)用:根據(jù)結(jié)論矩形面積最大時為正方形,利用對角線的長求得正方形的面積;拓展延伸:由上一問的結(jié)論,可知四邊形為正方形,證明四邊形是正方形,繼而求得面積【詳解】解:【問題原型】∵為直徑,∴為半徑.令.∵四邊形為矩形,∴,,.∴.∴點、在上.【結(jié)論應(yīng)用】連續(xù)交于點,過點作于點.∴.由【發(fā)現(xiàn)結(jié)論】可知,點在以為直徑的圓上,即,∴當即時,矩形的面積最大.∴矩形的面積最大值為.【拓展延伸】如圖,連接,設(shè)與的交點為四邊形是正方形,,點、分別為邊、的中點,四邊形是矩形由【結(jié)論應(yīng)用】可知,時,矩形的面積最大為此時四邊形為正方形,此時最大,,四邊形是正方形正方形的面積為:【點睛】本題考查了矩形的性質(zhì),正方形的性質(zhì)與判定,靈活運用矩形,正方形的性質(zhì)和判定是解題的關(guān)鍵.5.在中,點D,E分別是邊上的點,.基礎(chǔ)理解:(1)如圖1,若,求的值;證明與拓展:(2)如圖2,將繞點A逆時針旋轉(zhuǎn)a度,得到,連接;①求證:;②如圖3,若在旋轉(zhuǎn)的過程中,點恰好落在上時,連接,則的面積為________.解析:(1);(2)①見詳解;②13.44【分析】(1)利用平行線分線段定理,直接求解即可;、(2)①先推出,從而得,進而即可得到結(jié)論;②先推出AE=AE1=8,DE=D1E1=10,過點A作AM⊥DE于點M,則DM=3.6,D1E=2.8,再證明∠D1EE1=90°,進而即可求解.【詳解】解:(1)∵,,∴=;(2)①∵將繞點A逆時針旋轉(zhuǎn)a度,得到,∴=AD,=AE,∠BAD1=∠CAE1,∵,∴,即,∴,∴,∴;②由①可知,∴,∵將繞點A逆時針旋轉(zhuǎn),得到,點恰好落在上,∴AD1=AD=6,∠D1AE1=∠DAE=90°,∴AE=AE1=AD1=8,DE=D1E1=,過點A作AM⊥DE于點M,則DM=D1M=AD×cos∠ADE=AD×=6×=3.6,∴D1E=10-3.6×2=2.8,∵∠D1AE1=∠DAE=90°,∴∠DAD1=∠EAE1,又∵AD1=AD,AE=AE1,∴∠ADE=,∴∠AED+=∠AED+∠ADE=90°,即:∠D1EE1=90°,∴,∴的面積=D1E?EE1=×2.8×9.6=13.44.故答案是:13.44.【點睛】本題主要考查相似三角形的判定和性質(zhì),解直角三角形,勾股定理,平行線分線段成比例定理,旋轉(zhuǎn)的性質(zhì),熟練掌握相似三角形的判定和性質(zhì),是解題的關(guān)鍵.6.如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉(zhuǎn)動,轉(zhuǎn)過的角度記作α;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:(1)探究:若R=2,m=1,如圖1,當旋轉(zhuǎn)30°時,圓心O′到射線AB的距離是;如圖2,當α=°時,半圓O與射線AB相切;(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請你求出滿足要求的R,并說明理由.(3)發(fā)現(xiàn):如圖4,在0°<α<90°時,為了對任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關(guān)系,請你幫助他直接寫出這個關(guān)系;cosα=(用含有R、m的代數(shù)式表示)(4)拓展:如圖5,若R=m,當半圓弧線與射線AB有兩個交點時,α的取值范圍,并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)解析:(1)+1;60°;(2)4+2;(3);(4)m2.【詳解】試題分析:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.如圖2中,設(shè)切點為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,在Rt△O′EM中,由sinα=,推出α=60°.(2)設(shè)切點為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問題.(3)設(shè)切點為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問題、(4)當半圓與射線AB相切時,之后開始出現(xiàn)兩個交點,此時α=90°;當N′落在AB上時,為半圓與AB有兩個交點的最后時刻,此時∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,當半圓弧線與射線AB有兩個交點時,α的取值范圍是:90°<α≤120°.當N′落在AB上時,陰影部分面積最大,求出此時的面積即可.試題解析:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.想辦法求出O′E的長即可.在Rt△MFO′中,∵∠MOF=30°,MO′=2,∴O′F=O′M?cos30°=,O′E=+1,∴點O′到AB的距離為+1.如圖2中,設(shè)切點為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,∴AE=O′F=2,∵AM=1,∴EM=1,在Rt△O′EM中,sinα=,∴α=60°故答案為+1,60°.(2)設(shè)切點為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.∵O′P=R,∴R=R+1,∴R=4+2.(3)設(shè)切點為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.在Rt△O′QM中,O′Q=R?cosα,QP=m,∵O′P=R,∴R?cosα+m=R,∴cosα=.故答案為.(4)如圖5中,當半圓與射線AB相切時,之后開始出現(xiàn)兩個交點,此時α=90°;當N′落在AB上時,為半圓與AB有兩個交點的最后時刻,此時∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,當半圓弧線與射線AB有兩個交點時,α的取值范圍是:90°<α≤120°故答案為90°<α≤120°;當N′落在AB上時,陰影部分面積最大,所以S═﹣?m?m=m2.7.問題發(fā)現(xiàn)如圖,正方形將正方形繞點旋轉(zhuǎn),直線交于點請直接寫出線段與的數(shù)量關(guān)系是,位置關(guān)系是_;拓展探究如圖,矩形將矩形繞點旋轉(zhuǎn),直線交于點中線段關(guān)系還成立嗎/若成立,請寫出理由;若不成立,請寫出線段的數(shù)量關(guān)系和位置關(guān)系,并說明理由;解決問題在的條件下,矩形繞點旋轉(zhuǎn)過程中,請直接寫出當點與點重合時,線段的長,解析:;中數(shù)量關(guān)系不成立,位置關(guān)系成立.,理由見解析;或【分析】(1)證明△ADE≌△CDG(SAS),可得AE=CG,∠DAG=∠DCG,再由直角三角形兩個銳角互余即可證得AE⊥CG;(2)先證明△ADE∽△CDG,利用相似三角形的性質(zhì)證明即可.(3)先通過作圖找到符合題意的兩種情況,第一種情況利用勾股定理求解即可;第二種情況借助相似三角形及勾股定理計算即可.【詳解】(1);理由如下:由題意知在正方形中,,,在△ADE與△CDG中,∴△ADE≌△CDG(SAS)∴,∵對頂角相等,∴.(2)(1)中數(shù)量關(guān)系不成立,位置關(guān)系成立.即:理由如下:由題意知在矩形中,,,,∵對頂角相等∴.綜上所述:(3)如圖1,當點G、P在點A處重合時,連接AE,則此時∠ADE=∠GDE=90°∴在Rt△ADE中,AE=,如圖1,當點G、P重合時,則點A、E、G在同一直線上,∵AD=DG=4,∴∠DAG=∠DGA,∵∠ADC=∠AGP=90°,∠AOD=∠COG,∴∠DAG=∠COG,∴∠DGA=∠COG,又∵∠GDO=∠CDG,∴△GDO∽△CDG,∴∴∴DO=2,CG=2OG,∴OC=DC-DO=8-2=6,∵在Rt△COG中,OG2+GC2=OC2,∴OG2+(2OG)2=62,∴OG=(舍負),∴CG=,由(2)得:∴AE=,綜上所述,AE的長為或.【點睛】本題綜合考查了全等三角形及相似三角形的判定及性質(zhì),以及勾股定理的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解決本題的關(guān)鍵.8.(1)探究發(fā)現(xiàn):下面是一道例題及解答過程,請補充完整:如圖①在等邊△ABC內(nèi)部,有一點P,若∠APB=150°,求證:AP2+BP2=CP2證明:將△APC繞A點逆時針旋轉(zhuǎn)60°,得到△AP’B,連接PP’,則△APP’為等邊三角形∴∠APP’=60°,PA=PP’,PC=∵∠APB=150°,∴∠BPP’=90°∴P’P2+BP2=,即PA2+PB2=PC2(2)類比延伸:如圖②在等腰△ABC中,∠BAC=90°,內(nèi)部有一點P,若∠APB=135°,試判斷線段PA,PB,PC之間的數(shù)量關(guān)系,并證明.(3)聯(lián)想拓展:如圖③在△ABC中,∠BAC=120°,AB=AC,點P在直線AB上方,且∠APB=60°,滿足(kPA)2+PB2=PC2(其中k>0),請直接寫出k的值.解析:(1)P’B,P’B2;(2)2PA2+PB2=PC2,見解析;(3)k=【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理直接寫出即可.(2)將△APC繞A點逆時針旋轉(zhuǎn)90°,得到△AP′B,連接PP′,論證PP′=2PA,再根據(jù)勾股定理代換即可.(3)將△APC繞A點順時針旋轉(zhuǎn)120°得到△AP′B,連接PP′,過點A作AH⊥PP′,論證PP′=PA,再根據(jù)勾股定理代換即可.【詳解】(1)PC=P’B,P’P2+BP2=P’B2(2)關(guān)系式為:2PA2+PB2=PC2證明:將△APC繞A點逆時針旋轉(zhuǎn)90°,得到△AP’B,連接PP’,則△APP’為等腰直角三角形,∴∠APP’=45°,PP’=PA,PC=P’B,∵∠APB=135°,∴∠BPP’=90°,∴P’P2+BP2=P’B2,∴2PA2+PB2=PC2.(3)k=將△APC繞點A順時針旋轉(zhuǎn)120°得到△AP’B,連接PP’,過點A作AH⊥PP’,可得【點睛】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、勾股定理是解題的關(guān)鍵.9.和都是等邊三角形,繞點旋轉(zhuǎn),連接.猜測發(fā)現(xiàn):(1)如圖1,與是否相等?若相等,加以證明;若不相等,請說明理由.問題解決:(2)若三點不在一條直線上,且,求的長.拓展運用:(3)若三點在一條直線上(如圖2),且和的邊長分別為1和2,的面積及的值.解析:(1)AE=BD,理由見解析;(2)5;(3)面積為,=【分析】(1)根據(jù)等邊三角形的性質(zhì),容易證明△BCD≌△ACE,從而問題即可解決;(2)根據(jù)∠ADC=30゜及△DCE是等邊三角形,可得∠ADE=∠ADC+∠CDE=90゜,從而可計算出AE,再由(1)即可得BD的長;(3)過A點作AF⊥CD于F,根據(jù)和都是等邊三角形,可得∠ACD=60゜,于是在直角△ACF中利用三角函數(shù)知識可求得AF的長,從而可求得△ACD的面積;在△ACF中還可求得CF的長,從而可得DF的長,這樣在直角△ADF中即可求得結(jié)論.【詳解】(1)AE=BD.理由如下:∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴;(2)如圖3,由(1)得:,∵是等邊三角形,∴,∵,∴,在中,,∴,∴;(3)如圖2,過作于,∵三點在一條直線上,∴,∵和都是等邊三角形,∴,∴,在中,,∴,,∴,,在中,.【點睛】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、三角函數(shù)等知識,帶有一定的綜合性.10.在△ABC中,AD為BC邊上的中線,E為AD上一動點,設(shè)DE=nEA,連接CE并延長,交AB于點F.(1)嘗試探究:如圖1,當∠BAC=90°,∠B=30°,DE=EA時,BF,BA之間的數(shù)量關(guān)系是;(2)類比延伸:如圖2,當△ABC為銳角三角形,DE=EA時,(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由;(3)拓展遷移:如圖3,當△ABC為銳角三角形,DE=nEA時,請直接寫出BF,BA之間的數(shù)量關(guān)系.解析:(1);(2)仍然成立,見解析;(3)【分析】(1)嘗試探究:過點作,交于,可證,,,可得,可證,可得BF,BA之間的數(shù)量關(guān)系;(2)類比延伸:過點作,交于,可證,,可得,可證,可得之間的數(shù)量關(guān)系;(3)拓展遷移:過點作,交于,由平行線分線段成比例可得,可得,即可求之間的數(shù)量關(guān)系.【詳解】解:(1)嘗試探究如圖,過點作,交于∵是中線,∴∵,∴,∴∴∴∴∴(2)類比延伸:結(jié)論仍然成立,理由如下:如圖,過點作,交于∵是中線,∴∵,∴,∴∴∴∴∴(3)拓展遷移如圖,過點作,交于∵,且∴∴∵∴∴∴∴∴【點睛】本題主要考查了相似三角形的判定和性質(zhì)綜合,根據(jù)題干條件作出輔助線并得到對應(yīng)的相似三角形是解決本題的關(guān)鍵.11.德國著名的天文學家開普勒說過:“幾何學里有兩件寶,一個是勾股定理,另一個是黃金分割.如果把勾股定理比作黃金礦的話,那么可以把黃金分割比作鉆石礦”.如圖①,點C把線段分成兩部分,如果,那么稱點C為線段的黃金分割點.(1)特例感知:在圖①中,若,求的長;(2)知識探究:如圖②,作⊙O的內(nèi)接正五邊形:①作兩條相互垂直的直徑、;②作的中點P,以P為圓心,為半徑畫弧交于點Q;③以點A為圓心,為半徑,在⊙O上連續(xù)截取等弧,使弦,連接;則五邊形為正五邊形.在該正五邊形作法中,點Q是否為線段的黃金分割點?請說明理由.(3)拓展應(yīng)用:國旗和國徽上的五角星是革命和光明的象征,是一個非常優(yōu)美的幾何圖形,與黃金分割有著密切的聯(lián)系.延長題(2)中的正五邊形的每條邊,相交可得到五角星,擺正后如圖③,點E是線段的黃金分割點,請利用題中的條件,求的值.解析:(1)61.8;(2)是,理由見解析;(3)【分析】(1)根據(jù)黃金分割的定義求解即可;(2)設(shè)⊙O的半徑為a,則OA=ON=OM=a,利用勾股定理求出PA,繼而求出OQ,MQ,即可作出判斷;(3)先求出正五邊形的每個內(nèi)角,即可得到∠PEA=∠PAE=,根據(jù)已知條件可知cos72°=,再根據(jù)點E是線段PD的黃金分割點,即可求解.【詳解】解:(1)∵,∴,即,解得:AC≈61.8;(2)Q是線段OM的黃金分割點,理由如下:設(shè)⊙O的半徑為a,則OA=ON=OM=a,∴OP=,∴,∴OQ=PQ-OP=,∴MQ=OM-OQ=,,∴Q是線段OM的黃金分割點;(3)正五邊形的每個內(nèi)角為:,∴∠PEA=∠PAE=,∴cos72°=,∵點E是線段PD的黃金分割點,∴,又∵AE=ED,∴,∴cos72°=.【點睛】本題考查黃金分割、勾股定理、銳角三角函數(shù),解題的關(guān)鍵是讀懂題意正確解題.12.如圖1,在中,,,點,分別在邊,上,,連接,點,,分別為,,的中點.(1)觀察猜想圖1中,線段與的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把繞點逆時針方向旋轉(zhuǎn)到圖2的位置,連接,,,判斷的形狀,并說明理由;(3)拓展延伸把繞點在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出面積的最大值.解析:(1)PM=PN,;(2)等腰直角三角形,理由詳見解析;(3).【詳解】試題分析:(1)已知點,,分別為,,的中點,根據(jù)三角形的中位線定理可得,,,根據(jù)平行線的性質(zhì)可得∠DPM=∠DCE,∠NPD=∠ADC,在中,,,,可得BD=EC,∠DCE+∠ADC=90°,即可得PM=PN,∠DPM+∠NPD=90°,即;(2)是等腰直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)易證△BAD≌△CAE,即可得BD=CE,∠ABD=∠ACE,根據(jù)三角形的中位線定理及平行線的性質(zhì)(方法可類比(1)的方法)可得PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN為等腰直角三角形;(3)把繞點旋轉(zhuǎn)到如圖的位置,此時PN=(AD+AB)="7,"PM=(AE+AC)=7,且PN、PM的值最長,由(2)可知PM=PN,,所以面積的最大值為.試題解析:(1)PM=PN,;(2)等腰直角三角形,理由如下:由旋轉(zhuǎn)可得∠BAD=∠CAE,又AB=AC,AD=AE∴△BAD≌△CAE∴BD=CE,∠ABD=∠ACE,∵點,分別為,的中點∴PM是△DCE的中位線∴PM=CE,且,同理可證PN=BD,且∴PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN為等腰直角三角形.(3).考點:旋轉(zhuǎn)和三角形的綜合題.13.問題背景(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點,過點E作EF∥AB交BC于點F.請按圖示數(shù)據(jù)填空:四邊形DBFE的面積,△EFC的面積,△ADE的面積.探究發(fā)現(xiàn)(2)在(1)中,若,,DE與BC間的距離為.請證明.拓展遷移(3)如圖2,□DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試利用(2)中的結(jié)論求△ABC的面積.解析:(1),,;(2)見解析;(3)18【分析】(1)根據(jù)平行四邊形面積公式、三角形面積公式,相似三角形的性質(zhì)即可解決問題.(2)根據(jù)平行四邊形面積公式、三角形面積公式,相似三角形的性質(zhì),分別求出S1、S2即可解決問題.(3)過點G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形,利用(2)的結(jié)論求出□DBHG的面積,△GHC的面積即可.【詳解】(1)∵DE∥BC,EF∥AB,∴四邊形DBFE是平行四邊形,∴S=2×3=6,∴∠AED=∠C,∠A=∠CEF∴△ADE∽△EFC∴S2=1,故答案為6,9,1.(2)證明:∵DE∥BC,EF∥AB,∴四邊形DBFE為平行四邊形,,.∴△ADE∽△EFC.∴.∵,∴.∴.而,∴(3)解:過點G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形.∴∠GHC=∠B,BD=HG,DG=BH,∵四邊形DEFG為平行四邊形,∴DG=EF.∴BH=EF.∴BE=HF,∴△DBE≌△GHF.∴△GHC的面積為5+3=8.由(2)得,□DBHG的面積為.∴△ABC的面積為.【點睛】本題考查四邊形綜合題、相似三角形的性質(zhì)等知識,解題的關(guān)鍵是學會轉(zhuǎn)化的思想,把問題轉(zhuǎn)化為我們熟悉的題型,屬于中考壓軸題,14.(1)方法選擇如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.小穎認為可用截長法證明:在上截取,連接…小軍認為可用補短法證明:延長至點,使得…請你選擇一種方法證明.(2)類比探究(探究1)如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.(探究2)如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.(3)拓展猜想如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.解析:(1)方法選擇:證明見解析;(2)【探究1】:;【探究2】;(3)拓展猜想:.【分析】(1)方法選擇:根據(jù)等邊三角形的性質(zhì)得到∠ACB=∠ABC=60°,如圖①,在BD上截取DM=AD,連接AM,由圓周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根據(jù)全等三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;(2)類比探究:如圖②,由BC是⊙O的直徑,得到∠BAC=90°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABC=∠ACB=45°,過A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根據(jù)全等三角形的性質(zhì)得到結(jié)論;【探究2】如圖③,根據(jù)圓周角定理和三角形的內(nèi)角和得到∠BAC=90°,∠ACB=60°,過A作AM⊥AD交BD于M,求得∠AMD=30°,根據(jù)直角三角形的性質(zhì)得到MD=2AD,根據(jù)相似三角形的性質(zhì)得到BM=CD,于是得到結(jié)論;(3)如圖④,由BC是⊙O的直徑,得到∠BAC=90°,過A作AM⊥AD交BD于M,求得∠MAD=90°,根據(jù)相似三角形的性質(zhì)得到BM=CD,DM=AD,于是得到結(jié)論.【詳解】(1)方法選擇:∵,∴,如圖①,在上截取,連接,∵,∴是等邊三角形,∴,∵,∵,∴,∴,∴;(2)類比探究:如圖②,∵是的直徑,∴,∵,∴,過作交于,∵,∴是等腰直角三角形,∴,,∴,∴,∵,∴,∴,∴;[探究2]如圖③,∵若是的直徑,,∴,,過作交于,∵,∴,∴,∵,,∴,∴,∴,∴;故答案為;(3)拓展猜想:;理由:如圖④,∵若是的直徑,∴,過作交于,∴,∴,∴,∴,∴,∵,,∴,∴,∴,∴.故答案為.【點睛】本題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.15.(問題)如圖1,在中,,過點作直線平行于.,點在直線上移動,角的一邊始終經(jīng)過點,另一邊與交于點,研究和的數(shù)量關(guān)系.(探究發(fā)現(xiàn))(1)如圖2,某數(shù)學興趣小組運用“從特殊到一般”的數(shù)學思想,發(fā)現(xiàn)當點移動到使點與點重合時,通過推理就可以得到,請寫出證明過程;(數(shù)學思考)(2)如圖3,若點是上的任意一點(不含端點),受(1)的啟發(fā),這個小組過點作交于點,就可以證明,請完成證明過程;(拓展引申)(3)如圖4,在(1)的條件下,是邊上任意一點(不含端點),是射線上一點,且,連接與交于點,這個數(shù)學興趣小組經(jīng)過多次取點反復(fù)進行實驗,發(fā)現(xiàn)點在某一位置時的值最大.若,請你直接寫出的最大值.解析:【探究發(fā)現(xiàn)】(1)見解析;【數(shù)學思考】(2)見解析;【拓展引申】(3)時,有最大值為2.【分析】根據(jù)等腰三角形的性質(zhì)及平行的定義即可解得根據(jù)證明即可推出過點作交于點,連接,可證明,再推出即可得=,則.【詳解】證明:【探究發(fā)現(xiàn)】(1)∵∴∵∴,且∴∴即【數(shù)學思考】(2)∵∴∴,∵∴,且,∴∴【拓展引申】(3)如圖4,過點作交于點,連接,∵,∴∵∴∴∴,且∴∴∵,∴∴∴∴∴∵∴點,點,點,點四點共圓,∴∴,且∴∴∴∴∴時,有最大值為2.【點睛】本題考查等腰三角形,解題關(guān)鍵在于熟練掌握等腰三角形的性質(zhì).16.(1)(閱讀與證明)如圖1,在正的外角內(nèi)引射線,作點C關(guān)于的對稱點E(點E在內(nèi)),連接,、分別交于點F、G.①完成證明:點E是點C關(guān)于的對稱點,,,.正中,,,,得.在中,,______.在中,,______.②求證:.(2)(類比與探究)把(1)中的“正”改為“正方形”,其余條件不變,如圖2.類比探究,可得:①______;②線段、、之間存在數(shù)量關(guān)系___________.(3)(歸納與拓展)如圖3,點A在射線上,,,在內(nèi)引射線,作點C關(guān)于的對稱點E(點E在內(nèi)),連接,、分別交于點F、G.則線段、、之間的數(shù)量關(guān)系為__________.解析:(1)①60°,30°;②證明見解析;(2)①45°;②BF=(AF+FG);(3).【分析】(1)①根據(jù)等量代換和直角三角形的性質(zhì)即可確定答案;②在FB上取AN=AF,連接AN.先證明△AFN是等邊三角形,得到∠BAN=∠2=∠1,然后再證明△ABN≌△AEF,然后利用全等三角形的性質(zhì)以及線段的和差即可證明;(2)類比(1)的方法即可作答;(3)根據(jù)(1)(2)的結(jié)論,即可總結(jié)出答案.【詳解】解:(1)①∵,,∴,即60°;∵∴故答案為60°,30°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=60°∴△AFN是等邊三角形∴AF=FN=AN∵FN=AF∴∠BAC=∠NAF=60°∴∠BAN+∠NAC=∠NAC+∠2∴∠BAN=∠2∵點C關(guān)于的對稱點E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=30°∴EF=2FG∴BN=EF=2FG∵BF=BN+NF∴BF=2FG+AF(2)①點E是點C關(guān)于的對稱點,,,.正方形ABCD中,,,,得.在中,,45.在中,,45.故答案為45°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=45°∴△AFN是等腰直角三角形∴∠NAF=90°,AF=AN∴∠BAN+∠NAC=∠NAC+∠2=90°,FN=AF∴∠BAN=∠2∵點C關(guān)于的對稱點E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=45°∴EF=FG∴BN=EF=FG∵BF=BN+NF∴BF=FG+AF(3)由(1)得:當∠BAC=60°時BF=AF+2FG=;由(2)得:當∠BAC=90°時BF=AF+2FG=;以此類推,當當∠BAC=60°時,.【點睛】本題考查了軸對稱的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)以及三角函數(shù)的應(yīng)用,靈活應(yīng)用所學知識是解答本題的關(guān)鍵.17.某數(shù)學課外活動小組在學習了勾股定理之后,針對圖1中所示的“由直角三角形三邊向外側(cè)作多邊形,它們的面積,,之間的關(guān)系問題”進行了以下探究:類比探究(1)如圖2,在中,為斜邊,分別以為斜邊向外側(cè)作,,,若,則面積,,之間的關(guān)系式為;推廣驗證(2)如圖3,在中,為斜邊,分別以為邊向外側(cè)作任意,,,滿足,,則(1)中所得關(guān)系式是否仍然成立?若成立,請證明你的結(jié)論;若不成立,請說明理由;拓展應(yīng)用(3)如圖4,在五邊形中,,,,,點在上,,,求五邊形的面積.解析:(1);(2)結(jié)論成立,證明看解析;(3)【分析】(1)由題目已知△ABD、△ACE、△BCF、△ABC均為直角三角形,又因為,則有∽∽,利用相似三角形的面積比為邊長平方的比,列出等式,找到從而找到面積之間的關(guān)系;(2)在△ABD、△ACE、△BCF中,,,可以得到∽∽,利用相似三角形的面積比為邊長平方的比,列出等式,從而找到面積之間的關(guān)系;(3)將不規(guī)則四邊形借助輔助線轉(zhuǎn)換為熟悉的三角形,過點A作AHBP于點H,連接PD,BD,由此可知,,即可計算出,根據(jù)△ABP∽△EDP∽△CBD,從而有,由(2)結(jié)論有,最后即可計算出四邊形ABCD的面積.【詳解】(1)∵△ABC是直角三角形,∴,∵△ABD、△ACE、△BCF均為直角三角形,且,∴∽∽,∴,,∴∴得證.(2)成立,理由如下:∵△ABC是直角三角形,∴,∵在△ABD、△ACE、△BCF中,,,∴∽∽,∴,,∴∴得證.(3)過點A作AHBP于點H,連接PD,BD,∵,,∴,,∵,∴,∴PH=AH=,∴,,∴,∵,ED=2,∴,,∴,∵,∴△ABP∽△EDP,∴,,∴,,∴,,∵,∴∵,∴∵∴△ABP∽△EDP∽△CBD∴故最后答案為.【點睛】(1)(2)主要考查了相似三角形的性質(zhì),若兩三角形相似,則有面積的比值為邊長的平方,根據(jù)此性質(zhì)找到面積與邊長的關(guān)系即可;(3)主要考查了不規(guī)則四邊形面積的計算以及(2)的結(jié)論,其中合理正確利用前面得出的結(jié)論是解題的關(guān)鍵.18.(證明體驗)(1)如圖1,為的角平分線,,點E在上,.求證:平分.(思考探究)(2)如圖2,在(1)的條件下,F(xiàn)為上一點,連結(jié)交于點G.若,,,求的長.(拓展延伸)(3)如圖3,在四邊形中,對角線平分,點E在上,.若,求的長.解析:(1)見解析;(2);(3)【分析】(1)根據(jù)SAS證明,進而即可得到結(jié)論;(2)先證明,得,進而即可求解;(3)在上取一點F,使得,連結(jié),可得,從而得,可得,,最后證明,即可求解.【詳解】解:(1)∵平分,∴,∵,∴,∴,∴,∴,即平分;(2)∵,∴,∵,∴,∴.∵,∴.∵,∴;(3)如圖,在上取一點F,使得,連結(jié).∵平分,∴∵,∴,∴.∵,∴.∵,∴,∴.∵,∴.∵,又∵,∴∴,∴,∴.【點睛】本題主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),添加輔助線,構(gòu)造全等三角形和相似三角形,是解題的關(guān)鍵.19.某數(shù)學興趣小組在數(shù)學課外活動中,對多邊形內(nèi)兩要互相垂直的線段做了如下探究:(觀察與猜想)(1)如圖1,在正方形中,點,分別是,上的兩點,連接,,,則的值為__________;(2)如圖2,在矩形中,,,點是上的一點,連接,,且,則的值為__________;(類比探究)(3)如圖3,在四邊形中,,點為上一點,連接,過點作的垂線交的延長線于點,交的延長線于點,求證:;(拓展延伸)(4)如圖4,在中,,,,將沿翻折,點落在點處得,點,分別在邊,上,連接,,且.①求的值;②連接,若,直接寫出的長度.解析:(1)1;(2);(3)證明見解析;(4)①;②.【分析】(1)先根據(jù)正方形的性質(zhì)可得,再根據(jù)直角三角形的性質(zhì)可得,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,由此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職水族科學與技術(shù)(水族養(yǎng)殖)試題及答案
- 2026年肉牛養(yǎng)殖(肉牛育肥管理)試題及答案
- 2025年中職餐飲管理(餐飲管理實務(wù))試題及答案
- 2025年中職表演類(戲曲表演基礎(chǔ))試題及答案
- 2025年中職(園藝技術(shù))花卉栽培階段測試題及答案
- 中國特高壓技術(shù)介紹
- 養(yǎng)老院老人緊急救援人員考核獎懲制度
- 養(yǎng)老院老人物品寄存制度
- 養(yǎng)老院老人安全出行制度
- 養(yǎng)老院環(huán)境保護管理制度
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人筆試參考題庫及答案解析
- 老年患者心理護理實踐
- 2026海姆立克急救法更新要點解讀培訓(xùn)課件
- 2026年寒假作業(yè)實施方案(第二版修訂):騏驥馳騁勢不可擋【課件】
- 2026年春教科版(新教材)小學科學三年級下冊(全冊)教學設(shè)計(附教材目錄P131)
- 《創(chuàng)新與創(chuàng)業(yè)基礎(chǔ)》課件-項目1 創(chuàng)新認知與思維培養(yǎng)
- 廣東省汕頭市金平區(qū)2024-2025學年九年級上學期期末物理試題(含答案)
- 臨床用血技術(shù)規(guī)范2025年版與2000年版對照學習課件
- 2025職業(yè)技能培訓(xùn)學校自查報告范文(3篇)
- 2025-2026學年冀教版(2024)小學數(shù)學三年級上冊(全冊)教學設(shè)計(附目錄P175)
- 無人機駕駛員培訓(xùn)基地項目可行性研究報告
評論
0/150
提交評論