初中幾何知識點鞏固練習(xí)題_第1頁
初中幾何知識點鞏固練習(xí)題_第2頁
初中幾何知識點鞏固練習(xí)題_第3頁
初中幾何知識點鞏固練習(xí)題_第4頁
初中幾何知識點鞏固練習(xí)題_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

初中幾何知識點鞏固練習(xí)題一、圖形的初步認識與相交線、平行線知識回顧:本部分主要涉及直線、射線、線段的概念與性質(zhì),角的度量與分類,相交線所形成的對頂角、鄰補角,垂線的性質(zhì),以及平行線的判定與性質(zhì)。練習(xí)題:1.選擇題:下列說法中,正確的是()A.延長直線AB到CB.畫射線OB=3厘米C.線段AB和線段BA表示同一條線段D.兩點之間,直線最短2.填空題:一個角的補角是它的余角的3倍,則這個角的度數(shù)是______。3.解答題:如圖,直線AB與CD相交于點O,OE平分∠AOC,若∠AOD=100°,求∠COE的度數(shù)。(*此處應(yīng)有圖:直線AB、CD相交于O,OE為∠AOC的角平分線*)4.證明題:已知:如圖,∠1=∠2,∠A=∠F。求證:∠C=∠D。(*此處應(yīng)有圖:包含直線AC、DF被直線AG、BH所截形成的∠1、∠2,以及∠A、∠F等角*)*(提示:可嘗試尋找中間角進行轉(zhuǎn)化,如∠C=∠D的關(guān)系可通過判定直線平行來實現(xiàn)。)*二、三角形知識回顧:三角形的邊、角關(guān)系(三邊關(guān)系、內(nèi)角和定理、外角性質(zhì)),全等三角形的判定與性質(zhì),等腰三角形、等邊三角形的性質(zhì)與判定,直角三角形的性質(zhì)與判定(勾股定理及其逆定理)。練習(xí)題:1.選擇題:下列長度的三條線段,能組成三角形的是()A.2,3,5B.3,4,8C.5,6,10D.5,6,122.填空題:在△ABC中,∠A:∠B:∠C=1:2:3,則△ABC的形狀是______三角形。3.解答題:已知:如圖,點B、E、C、F在同一條直線上,AB=DE,AC=DF,BE=CF。求證:∠A=∠D。(*此處應(yīng)有圖:兩個三角形△ABC和△DEF,點B、E、C、F共線*)4.證明題:如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB,交BC于點D,DE⊥AB于點E。求證:CD=ED。若AC=6,BC=8,求DE的長。(*此處應(yīng)有圖:直角三角形ABC,∠C為直角,AD為角平分線,DE垂直AB*)*(提示:角平分線的性質(zhì)是關(guān)鍵,第二問可利用三角形面積法或勾股定理。)*三、四邊形知識回顧:平行四邊形、矩形、菱形、正方形的定義、性質(zhì)與判定,梯形(特別是等腰梯形)的性質(zhì)與判定。練習(xí)題:1.選擇題:下列命題中,正確的是()A.對角線相等的四邊形是矩形B.一組對邊平行,另一組對邊相等的四邊形是平行四邊形C.對角線互相垂直的平行四邊形是菱形D.四邊相等的四邊形是正方形2.填空題:已知菱形的兩條對角線長分別為6和8,則菱形的邊長為______,面積為______。3.解答題:如圖,在平行四邊形ABCD中,E、F分別是AB、CD的中點。求證:四邊形AECF是平行四邊形。(*此處應(yīng)有圖:平行四邊形ABCD,E、F分別為AB、CD中點*)4.證明題:已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,延長AD至點E,使DE=AD,連接BE、CE。求證:四邊形ABEC是矩形。(*此處應(yīng)有圖:等腰三角形ABC,AD為中線,延長AD到E使DE=AD,連接BE、CE*)*(提示:可先證明它是平行四邊形,再結(jié)合等腰三角形的性質(zhì)證明一個角是直角或?qū)蔷€相等。)*四、圓知識回顧:圓的基本概念(圓心、半徑、直徑、弧、弦、圓心角、圓周角),垂徑定理及其推論,圓周角定理及其推論,點與圓、直線與圓的位置關(guān)系,切線的性質(zhì)與判定。練習(xí)題:1.選擇題:下列說法正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦C.圓是軸對稱圖形,有無數(shù)條對稱軸D.三角形的外心到三角形各邊的距離相等2.填空題:在⊙O中,弦AB所對的圓心角為120°,若⊙O的半徑為6,則弦AB的長為______。3.解答題:如圖,AB是⊙O的直徑,點C在⊙O上,∠ACB的平分線交⊙O于點D。若AB=10,AC=6,求BC和AD的長。(*此處應(yīng)有圖:圓O,AB為直徑,C為圓上一點,CD平分∠ACB交圓于D*)*(提示:直徑所對的圓周角是直角,角平分線的性質(zhì),可能用到相似或勾股定理。)*五、幾何計算與證明綜合知識回顧:綜合運用以上所學(xué)知識解決較為復(fù)雜的幾何計算與證明問題,涉及輔助線的添加,多種定理的綜合應(yīng)用。練習(xí)題:1.綜合題:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,交AC于點E。(1)求證:BD=CD;(2)若∠BAC=40°,求弧DE的度數(shù)。(*此處應(yīng)有圖:等腰三角形ABC,AB=AC,AB為直徑的圓O交BC于D,交AC于E*)*(提示:連接AD,利用直徑所對圓周角及等腰三角形三線合一的性質(zhì)。)*2.探究題:已知:在正方形ABCD中,點E是邊BC上一點(不與B、C重合),連接AE,過點E作EF⊥AE,交邊CD于點F。(1)求證:△ABE∽△ECF;(2)若AB=4,BE=1,求CF的長。(*此處應(yīng)有圖:正方形ABCD,E在BC上,EF⊥AE交CD于F*)*(提示:尋找等角是證明相似的關(guān)鍵,利用相似三角形的對應(yīng)邊成比例求解長度。)*結(jié)語幾何學(xué)習(xí),重在理解,貴在思考,精在運用。上述練習(xí)題涵蓋了初中幾何的主要知識點,希望同學(xué)們能認真對待每一道題,不僅要知其然,更要知其所以然。在解題過程中,要善于總結(jié)方法,積累經(jīng)驗,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論