江蘇省十三大市2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第1頁
江蘇省十三大市2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第2頁
江蘇省十三大市2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第3頁
江蘇省十三大市2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第4頁
江蘇省十三大市2026屆高二上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省十三大市2026屆高二上數(shù)學期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設雙曲線的左、右頂點分別為、,點在雙曲線上第一象限內的點,若的三個內角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.2.我國古代數(shù)學名著《算法統(tǒng)宗》是明代數(shù)學家程大位(1533-1606年)所著.該書中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.13.下列關于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點D.函數(shù)圖象的對稱軸方程為4.已知雙曲線上的點到的距離為15,則點到點的距離為()A.7 B.23C.5或25 D.7或235.在三棱錐中,點E,F(xiàn)分別是的中點,點G在棱上,且滿足,若,則()A. B.C. D.6.已知橢圓C:的兩個焦點分別為,,橢圓C上有一點P,則的周長為()A.8 B.10C. D.127.已知向量,,若與共線,則實數(shù)值為()A. B.C.1 D.28.從直線上動點作圓的兩條切線,切點分別為、,則最大時,四邊形(為坐標原點)面積是()A. B.C. D.9.已知圓錐的表面積為,且它的側面展開圖是一個半圓,則這個圓錐的體積為()A. B.C. D.10.若圓與圓相外切,則的值為()A. B.C.1 D.11.直線的傾斜角為()A.-30° B.60°C.150° D.120°12.已知兩個向量,,且,則的值為()A.1 B.2C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線上一點到其焦點的距離為10.拋物線的方程為_____________;準線方程為_______14.二項式的展開式中,項的系數(shù)為__________.15.高二某位同學參加物理、政治科目的學考,已知這位同學在物理、政治科目考試中得A的概率分別為、,這兩門科目考試成績的結果互不影響,則這位考生至少得1個A的概率為______16.若滿足約束條件,則的最大值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,其頂點坐標為.(1)求直線的方程;(2)求的面積.18.(12分)已知圓,直線(1)當直線與圓相交,求的取值范圍;(2)當直線與圓相交于、兩點,且時,求直線的方程19.(12分)已知函數(shù).(1)若,求函數(shù)的單調區(qū)間;(2)設存在兩個極值點,且,若,求證:.20.(12分)如圖,四邊形是矩形,平面平面,為中點,,,(1)證明:平面平面;(2)求二面角的余弦值21.(12分)在公差為的等差數(shù)列中,已知,且成等比數(shù)列.(Ⅰ)求;(Ⅱ)若,求.22.(10分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當時,已知是假命題,是真命題,求x的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設點,其中,,求得,且有,,利用兩角和的正切公式可求得的值,進而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點、,設點,其中,,且,,且,,,所以,,,因為,所以,,則,因此,該雙曲線漸近線方程為.故選:B.2、A【解析】根據(jù)題意,轉化為等比數(shù)列,利用通項公式和求和公式進行求解.【詳解】設這個塔頂層有盞燈,則問題等價于一個首項為,公比為2的等比數(shù)列的前7項和為381,所以,解得,所以這個塔的最底層有盞燈.故選:A.3、D【解析】化簡,利用正弦型函數(shù)的性質,依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數(shù)圖象的對稱中心為點,C選項錯誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項正確故選:D4、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點坐標,根據(jù)雙曲線的定義知,,而,所以或故選:D【點睛】本題主要考查了雙曲線的定義及其應用,其中解答中熟記雙曲線的定義,列出方程是解答的關鍵,著重考查推理與運算能力,屬于基礎題.5、B【解析】利用空間向量的加、減運算即可求解.【詳解】由題意可得故選:B.6、B【解析】根據(jù)橢圓的定義可得:,所以的周長等于【詳解】因為,,所以,故的周長為故選:B7、D【解析】根據(jù)空間向量共線有,,結合向量的坐標即可求的值.【詳解】由題設,有,,則,可得.故選:D8、B【解析】分析可知當時,最大,計算出、,進而可計算得出四邊形(為坐標原點)面積.【詳解】圓的圓心為坐標原點,連接、、,則,設,則,,則,當取最小值時,,此時,,,,故,此時,.故選:B.9、D【解析】設圓錐的半徑為,母線長,根據(jù)已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結果.【詳解】設圓錐的半徑為,母線長,因為側面展開圖是一個半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.10、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D11、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.12、C【解析】由,可知,使,利用向量的數(shù)乘運算及向量相等即可得解.【詳解】∵,∴,使,得,解得:,所以故選:C【點睛】思路點睛:在解決有關平行的問題時,通常需要引入?yún)?shù),如本題中已知,引入?yún)?shù),使,轉化為方程組求解;本題也可以利用坐標成比例求解,即由,得,求出m,n.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】由題意得:拋物線焦點為F(0,),準線方程為y=﹣.因為點到其焦點的距離為10,所以根據(jù)拋物線的定義得到方程,得到該拋物線的準線方程【詳解】∵拋物線方程∴拋物線焦點為F(0,),準線方程為y=﹣,又∵點到其焦點的距離為10,∴根據(jù)拋物線的定義,得9+=10,∴p=2,拋物線∴準線方程為故答案為:,.14、80【解析】利用二項式的通項公式進行求解即可.【詳解】二項式的通項公式為:,令,所以項的系數(shù)為,故答案為:8015、【解析】根據(jù)給定條件利用相互獨立事件、對立事件的概率公式計算作答.【詳解】依題意,這位考生至少得1個A對立事件為物理、政治科目考試都沒有得A,其概率為,所以這位考生至少得1個A的概率為.故答案為:16、7【解析】畫出約束條件所表示的平面區(qū)域,結合圖象和直線在軸上的截距,確定目標函數(shù)的最優(yōu)解,代入即可求解.【詳解】畫出不等式組所表示的平面區(qū)域,如圖所示,目標函數(shù)可化為,當直線過點點時,此時直線在軸上的截距最大,此時目標函數(shù)取得最大值,又由,解得,即,所以目標函數(shù)的最大值為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求出AB的斜率,再利用點斜式寫出方程即可;(2)先求出,再求出C到AB的距離即可得到答案.【小問1詳解】由已知,,所以直線的方程為,即.【小問2詳解】,C到直線AB的距離為,所以的面積為.18、(1);(2)或【解析】(1)根據(jù)直線與圓的位置關系,利用幾何法可得出關于實數(shù)的不等式,由此可解得實數(shù)的取值范圍;(2)根據(jù)勾股定理求出圓心到直線的距離,再利用點到直線的距離公式可得出關于實數(shù)的值,即可求出直線的方程.【小問1詳解】解:圓的標準方程為,圓心為,半徑為,因為直線與圓相交,則,解得.【小問2詳解】解:因為,則圓心到直線的距離為,由點到直線的距離公式可得,整理得,解得或.所以,直線的方程為或.19、(1)在和上單調遞增,在上單調遞減;(2)證明見解析【解析】(1)首先求出函數(shù)的導函數(shù),再令、,分別求出函數(shù)的單調區(qū)間;(2)先求出,構造函數(shù),求出函數(shù)的導數(shù),得到函數(shù)的單調區(qū)間,求出函數(shù)的最小值,從而證明結論【小問1詳解】解:當時,,所以,令,解得或,令,解得,所以函數(shù)在和上單調遞增,在上單調遞減;【小問2詳解】解:,,,因為存在兩個極值點,,所以存在兩個互異的正實數(shù)根,,所以,,則,所以,所以,令,則,,,在上單調遞減,,而,即,20、(1)證明見解析;(2)【解析】(1)利用面面垂直的性質,證得平面,進而可得,平面即可得證;(2)在平面ABC內過點A作Ax⊥AB,以A為原點建立空間直角坐標系,借助空間向量而得解.【詳解】(1)因為,為中點,所以,因為是矩形,所以,因為平面平面,平面平面,平面,所以平面,因為平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC內過點A作Ax⊥AB,由(1)知,平面,故以點A為坐標原點,分別以,,的方向為軸,軸,軸的正方向,建立空間直角坐標系,如圖:則,,,,,則,所以,,,,由(1)知,為平面的一個法向量,設平面的法向量為,則,即,令,則,,所以,所以,因為二面角為銳角,則二面角的余弦值為.【點睛】思路點睛:二面角大小求解時要注意結合實際圖形判斷所求角是銳角還是鈍角21、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由題意求得數(shù)列的公差后可得通項公式.(Ⅱ)結合條件可得,分和兩種情況去掉中的絕對值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論