云南省昆明市黃岡實驗學校2026屆數(shù)學高二第一學期期末統(tǒng)考模擬試題含解析_第1頁
云南省昆明市黃岡實驗學校2026屆數(shù)學高二第一學期期末統(tǒng)考模擬試題含解析_第2頁
云南省昆明市黃岡實驗學校2026屆數(shù)學高二第一學期期末統(tǒng)考模擬試題含解析_第3頁
云南省昆明市黃岡實驗學校2026屆數(shù)學高二第一學期期末統(tǒng)考模擬試題含解析_第4頁
云南省昆明市黃岡實驗學校2026屆數(shù)學高二第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

云南省昆明市黃岡實驗學校2026屆數(shù)學高二第一學期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的各項均為正數(shù),公比,且滿足,則()A.8 B.4C.2 D.12.對于實數(shù)a,b,c,下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則3.接種疫苗是預防控制新冠疫情最有效的方法,我國自2021年1月9日起實施全民免費接種新冠疫苗并持續(xù)加快推進接種工作.某地為方便居民接種,共設置了A、B、C三個新冠疫苗接種點,每位接種者可去任一個接種點接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點接種疫苗的概率為()A. B.C. D.4.已知函數(shù)滿足,則曲線在點處的切線方程為()A. B.C. D.5.甲、乙、丙、丁、戊共5名同學進行勞動技術比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.1206.“楊輝三角”是中國古代重要的數(shù)學成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構成的數(shù)列的第項,則的值為()A. B.C. D.7.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A B.C. D.68.在如圖所示的棱長為1的正方體中,點P在側面所在的平面上運動,則下列四個命題中真命題的個數(shù)是()①若點P總滿足,則動點P的軌跡是一條直線②若點P到點A的距離為,則動點P的軌跡是一個周長為的圓③若點P到直線AB的距離與到點C的距離之和為1,則動點P的軌跡是橢圓④若點P到平面的距離與到直線CD的距離相等,則動點P的軌跡是拋物線A.1 B.2C.3 D.49.如圖,,是平面上兩點,且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點.若點A在以,為焦點的橢圓M上,則()A.點B和C都在橢圓M上 B.點C和D都在橢圓M上C.點D和E都在橢圓M上 D.點E和B都在橢圓M上10.已知命題:,;命題:,.則下列命題中為真命題的是()A. B.C. D.11.是等差數(shù)列,,,的第()項A.98 B.99C.100 D.10112.變量,之間的一組相關數(shù)據(jù)如表所示:若,之間的線性回歸方程為,則的值為()45678.27.86.65.4A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列滿足,,則______.14.已知是雙曲線上的一點,是上的兩個焦點,若,則的取值范圍是_______________15.已知命題:方程表示焦點在軸上的橢圓;命題:方程表示雙曲線.若為真,則實數(shù)的取值范圍為______.16.將一枚質(zhì)地均勻的骰子,先后拋擲次,則出現(xiàn)向上的點數(shù)之和為的概率是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖甲,在直角三角形中,已知,,,D,E分別是的中點.將沿折起,使點A到達點的位置,且,連接,得到如圖乙所示的四棱錐,M為線段上一點.(1)證明:平面平面;(2)過B,C,M三點的平面與線段A'E相交于點N,從下列三個條件中選擇一個作為已知條件,求直線DN與平面A'BC所成角的正弦值.①;②直線與所成角的大小為;③三棱錐的體積是三棱錐體積的注:如果選擇多個條件分別解答,按第一個解答計分.18.(12分)在平面直角坐標系中,已知橢圓過點,且離心率.(1)求橢圓的方程;(2)直線的斜率為,直線l與橢圓交于兩點,求的面積的最大值.19.(12分)設P是拋物線上一個動點,F(xiàn)為拋物線的焦點.(1)若點P到直線距離為,求的最小值;(2)若,求的最小值.20.(12分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設首項為2的數(shù)列的前n項和為,前n項積為,且______(1)求數(shù)列的通項公式;(2)若數(shù)列的前n項和為,令,求數(shù)列的前n項和21.(12分)如圖,在三棱柱中,面ABC,,,D為BC的中點(1)求證:平面;(2)若F為中點,求與平面所成角的正弦值22.(10分)設函數(shù),且存在兩個極值點、,其中.(1)求實數(shù)的取值范圍;(2)若恒成立,求最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)是等比數(shù)列,則通項為,然后根據(jù)條件可解出,進而求得【詳解】由為等比數(shù)列,不妨設首項為由,可得:又,則有:則故選:A2、D【解析】判斷不等式的真假,就是要考慮在不等式的變形過程中是否遵守不等式變形的規(guī)則.【詳解】若,令,,,,,故A錯誤;若,令c=0,則,故B錯誤;若,令a=-1,b=-2,,,故C錯誤;∵,故,根據(jù)不等式運算規(guī)則,在不等式的兩邊同時乘以或除以一個正數(shù),不等式的方向不變,故D正確.故選:D.3、C【解析】利用古典概型的概率公式可求出結果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:4、A【解析】求出函數(shù)的導數(shù),利用導數(shù)的定義求解,然后求解切線的斜率即可【詳解】解:函數(shù),可得,,可得,即,所以,可得,解得,所以,所以曲線在點處的切線方程為故選:A5、A【解析】根據(jù)題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據(jù)題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A6、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結合累加法可得數(shù)列的通項公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.7、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.8、C【解析】根據(jù)線面關系、距離關系可分別對每一個命題判斷.【詳解】若點P總滿足,又,,,可得對角面,因此點P的軌跡是直線,故①正確若點P到點A的距離為,則動點P的軌跡是以點B為圓心,以1為半徑的圓(在平面內(nèi)),因此圓的周長為,故②正確點P到直線AB的距離PB與到點C的距離PC之和為1,又,則動點P的軌跡是線段BC,因此③不正確點P到平面的距離(即到直線的距離)與到直線CD的距離(即到點C的距離)相等,則動點P的軌跡是以線段BC的中點為頂點,直線BC為對稱軸的拋物線(在平面內(nèi)),因此④正確故有①②④三個故選:C9、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因為,所以橢圓M中,因為,,,,所以D,E在橢圓M上.故選:C10、C【解析】利用基本不等式判斷命題的真假,由不等式性質(zhì)判斷命題的真假,進而確定它們所構成的復合命題的真假即可.【詳解】由,當且僅當時等號成立,故不存在使,所以命題為假命題,而命題為真命題,則為真,為假,故為假,為假,為真,為假.故選:C11、C【解析】等差數(shù)列,,中,,,由此求出,令,得到是這個數(shù)列的第100項【詳解】解:等差數(shù)列,,中,,令,得是這個數(shù)列的第100項故選:C12、C【解析】本題先求樣本點中心,再利用線性回歸方程過樣本點中心直接求解即可.【詳解】解:,,所以樣本點中心:,線性回歸方程過樣本點中心,則解得:,故選:C【點睛】本題考查線性回歸方程過樣本點中心,是簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)遞推關系依次求得的值.【詳解】依題意數(shù)列滿足,,所以.故答案為:14、【解析】由題意,,.故答案為.15、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據(jù)橢圓和雙曲線的定義即可解出?!驹斀狻俊邽檎?,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.16、【解析】將向上的點數(shù)記作,先計算出所有的基本事件數(shù),并列舉出事件“出現(xiàn)向上的點數(shù)之和為”所包含的基本事件,然后利用古典概型的概率公式可計算出所求事件的概率.【詳解】將骰子先后拋擲次,出現(xiàn)向上的點數(shù)記作,則基本事件數(shù)為,向上的點數(shù)之和為這一事件記為,則事件所包含的基本事件有:、、,共個基本事件,因此,.故答案為:.【點睛】本題考查利用古典概型的概率公式計算概率,解題時一般要列舉出相應的基本事件,遵循不重不漏的基本原則,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理及面面垂直的判定定理可得證;(2)分別選①,②,③可求得為的中點,再以為坐標原點,向量的方向分別為軸,軸,軸建立空間直角坐標系.利用空間向量求得所求的線面角.【小問1詳解】分別為的中點,.,,.,,平面.又平面,∴平面平面.【小問2詳解】(2)選①,;,,,,為的中點.選②,直線與所成角的大小為;,∴直線與所成角為.又直線與所成角的大小為,,,為的中點.選③,三棱錐的體積是三棱錐體積的,又,即,為的中點.∵過三點的平面與線段相交于點平面,平面.又平面平面,,為的中點.兩兩互相垂直,∴以為坐標原點,向量的方向分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標系.則;.設平面的一個法向量為,直線與平面所成的角為.由,得.令,得.則.∴直線與平面所成角的正弦值為.18、(1);(2)2.【解析】(1)由離心率,得到,再由點在橢圓上,得到,聯(lián)立求得,即可求得橢圓的方程.(2)設的方程為,聯(lián)立方程組,根據(jù)根系數(shù)的關系和弦長公式,以及點到直線的距離公式,求得,結合基本不等式,即可求解.【詳解】(1)由題意,橢圓的離心率,即,可得,又橢圓過點,可得,將代入,可得,故橢圓方程為.(2)設的方程為,設點,聯(lián)立方程組,消去y整理,得,所以,又直線與橢圓相交,所以,解得,則,點P到直線的距離,所以,當且僅當,即時,的面積取得最大值為2.【點睛】本題主要考查橢圓的標準方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯(lián)立直線方程與橢圓方程,應用一元二次方程根與系數(shù)的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.19、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題問題轉(zhuǎn)化為求的最小值,即求.(2)判斷點B在拋物線的內(nèi)部,過B作垂直準線于點Q,交拋物線于點,利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點為,準線方程為.由已知及拋物線的定義,可知,于是問題轉(zhuǎn)化為求的最小值.由平面幾何知識知,當F,P,A三點共線時,取得最小值,最小值為,即的最小值為.(2)把點B的橫坐標代入中,得,因為,所以點B在拋物線的內(nèi)部.過B作垂直準線于點Q,交拋物線于點(如圖所示).由拋物線的定義,可知,則,所以的最小值為4.【點睛】本題考查了拋物線的定義,理解定義是解題的關鍵,屬于基礎題.20、(1);(2).【解析】(1)選擇不同的條件,再通過構造數(shù)列以及累乘法即可求得對應情況下的通項公式;(2)根據(jù)(1)中所求,求得,再利用錯位相減法求其前項和即可.【小問1詳解】選①:∵,即,∴.即,∴數(shù)列是常數(shù)列,∴,故;選②:∵,∴時,,則,即∴,∴;當時,也滿足,∴;選③:得,所以數(shù)列是等差數(shù)列,首項為2,公差為1則,∴.【小問2詳解】由(1)知當時,,∴又∵時,,符合上式,∴∴∴而相減得∴.21、(1)證明見解析(2)【解析】(1)連接交于點O,連接OD,通過三角形中位線證明即可;(2)建立空間直角坐標系,利用向量法求解即可.【小問1詳解】解法1:如圖,連接交于點O,連接OD,因為在三棱柱中,四邊形是平行四邊形,所以O是的中點,因為D為BC的中點,所以在中,,因為平面,平面,所以平面平面解法2:因為在三棱柱中,面ABC,,所以BA,BC,兩兩垂直,故以B點為坐標原點,建立如圖的空間直角坐標系,因為,所以B(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,設平面的一個法向量為,則,即,令,則,∴,平面,所以平面;【小問2詳解】設與平面所成角為,由(1)知平面法向量為,F(xiàn)為中點,∴,,∴即與平面所成角正弦值為.22、(1)(2)【解析】(1)存在兩個極值點,等價于其導函數(shù)有兩個相異

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論