云天化中學(xué)2025年數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第1頁
云天化中學(xué)2025年數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第2頁
云天化中學(xué)2025年數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第3頁
云天化中學(xué)2025年數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第4頁
云天化中學(xué)2025年數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云天化中學(xué)2025年數(shù)學(xué)高二上期末質(zhì)量檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線C:的右焦點(diǎn)為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.2.經(jīng)過點(diǎn)作圓的弦,使點(diǎn)為弦的中點(diǎn),則弦所在直線的方程為A. B.C. D.3.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是()A.圓 B.雙曲線C.拋物線 D.橢圓4.已知三個觀測點(diǎn),在的正北方向,相距,在的正東方向,相距.在某次爆炸點(diǎn)定位測試中,兩個觀測點(diǎn)同時聽到爆炸聲,觀測點(diǎn)晚聽到,已知聲速為,則爆炸點(diǎn)與觀測點(diǎn)的距離是()A. B.C. D.5.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn)為,若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.6.已知等差數(shù)列的前項(xiàng)和為,若,則()A B.C. D.7.點(diǎn)到直線的距離為2,則的值為()A.0 B.C.0或 D.0或8.已知向量,滿足條件,則的值為()A.1 B.C.2 D.9.圓關(guān)于直線l:對稱的圓的方程為()A. B.C. D.10.已知{}為等比數(shù)列.,則=()A.—4 B.4C.—4或4 D.1611.在等差數(shù)列中,已知,則數(shù)列的前6項(xiàng)之和為()A.12 B.32C.36 D.7212.宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)f(x)=xlnx,若f′(x0)=2,則x0=________14.已知圓錐的側(cè)面積為,若其過軸的截面為正三角形,則該圓錐的母線的長為___________.15.在單位正方體中,點(diǎn)E為AD的中點(diǎn),過點(diǎn)B,E,的平面截該正方體所得的截面面積為______.16.過橢圓的右焦點(diǎn)作兩條相互垂直的直線m,n,直線m與橢圓交于A,B兩點(diǎn),直線n與橢圓交于C,D兩點(diǎn),若.則下列方程①;②;③;④.其中可以作為直線AB的方程的是______(寫出所有正確答案的序號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的準(zhǔn)線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設(shè)直線與拋物線相交于,兩點(diǎn),為坐標(biāo)原點(diǎn),證明:.18.(12分)如圖,在直三棱柱中,,是中點(diǎn).(1)求點(diǎn)到平面的的距離;(2)求平面與平面夾角的余弦值;19.(12分)在等差數(shù)列中.,(1)求的通項(xiàng)公式:(2)記的前項(xiàng)和為,求滿足的的最大值20.(12分)命題p:直線l:與圓C:有公共點(diǎn),命題q:雙曲線的離心率(1)若p,q均為真命題,求實(shí)數(shù)m的取值范圍;(2)若為真,為假,求實(shí)數(shù)m的取值范圍21.(12分)已知圓.(1)求過點(diǎn)M(2,1)的圓的切線方程;(2)直線過點(diǎn)且被圓截得的弦長為2,求直線的方程;(3)已知圓的圓心在直線y=1上,與y軸相切,且與圓相外切,求圓的標(biāo)準(zhǔn)方程.22.(10分)設(shè)a,b是實(shí)數(shù),若橢圓過點(diǎn),且離心率為.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)過橢圓E的上頂點(diǎn)P分別作斜率為,的兩條直線與橢圓交于C,D兩點(diǎn),且,試探究過C,D兩點(diǎn)的直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);否則,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求出圓心到漸近線的距離,根據(jù)弦長建立關(guān)系即可求解.【詳解】雙曲線的漸近線方程為,即,則點(diǎn)到漸近線的距離為,因?yàn)橄议L為,圓半徑為,所以,即,因?yàn)?,所以,則雙曲線的離心率為.故選:A.2、A【解析】由題知為弦AB的中點(diǎn),可得直線與過圓心和點(diǎn)的直線垂直,可求的斜率,然后用點(diǎn)斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,直線的斜率,直線的點(diǎn)斜式方程,屬于基礎(chǔ)題3、D【解析】根據(jù)題意知,所以,故點(diǎn)P的軌跡是橢圓.【詳解】由題意知,關(guān)于CD對稱,所以,故,可知點(diǎn)P的軌跡是橢圓.【點(diǎn)睛】本題主要考查了橢圓的定義,屬于中檔題.4、D【解析】根據(jù)題意作出示意圖,然后結(jié)合余弦定理解三角形即可求出結(jié)果.【詳解】設(shè)爆炸點(diǎn)為,由于兩個觀測點(diǎn)同時聽到爆炸聲,則點(diǎn)位于的垂直平分線上,又在的正東方向且觀測點(diǎn)晚聽到,則點(diǎn)位于的左側(cè),,,,設(shè),則,解得,則爆炸點(diǎn)與觀測點(diǎn)的距離為,故選:D.5、A【解析】根據(jù)雙曲線的幾何性質(zhì)和平面幾何性質(zhì),建立關(guān)于a,b,c的方程,從而可求得雙曲線的離心率得選項(xiàng).【詳解】由題意可設(shè)右焦點(diǎn)為,因?yàn)?,且圓:,所以點(diǎn)在以焦距為直徑的圓上,則,設(shè)的中點(diǎn)為點(diǎn),則為的中位線,所以,則,又點(diǎn)在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點(diǎn)睛】方法點(diǎn)睛:(1)求雙曲線的離心率時,將提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,利用和轉(zhuǎn)化為關(guān)于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對于焦點(diǎn)三角形,要注意雙曲線定義的應(yīng)用,運(yùn)用整體代換的方法可以減少計(jì)算量6、B【解析】利用等差數(shù)列的性質(zhì)可求得的值,再結(jié)合等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求得的值.【詳解】由等差數(shù)列的性質(zhì)可得,則,故.故選:B.7、C【解析】根據(jù)點(diǎn)到直線的距離公式即可得出答案.【詳解】解:點(diǎn)到直線的距離為,解得或.故選:C.8、A【解析】先求出坐標(biāo),進(jìn)而根據(jù)空間向量垂直的坐標(biāo)運(yùn)算求得答案.【詳解】因?yàn)?,所以,解?故選:A.9、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對稱的點(diǎn)的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對稱的點(diǎn)的坐標(biāo)為,則,解得,即圓關(guān)于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A10、B【解析】根據(jù)題意先求出公比,進(jìn)而用等比數(shù)列通項(xiàng)公式求得答案.【詳解】由題意,設(shè)公比為q,則,則.故選:B.11、C【解析】利用等差數(shù)列的求和公式結(jié)合角標(biāo)和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項(xiàng)之和為:故選:C.12、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當(dāng)n=1時,a=3,b=2,滿足進(jìn)行循環(huán)的條件,當(dāng)n=2時,a,b=4,滿足進(jìn)行循環(huán)的條件,當(dāng)n=3時,a,b=8,滿足進(jìn)行循環(huán)的條件,當(dāng)n=4時,a,b=16,不滿足進(jìn)行循環(huán)的條件,故輸出的n值為4,故選:B【點(diǎn)睛】本題考查的知識點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答二、填空題:本題共4小題,每小題5分,共20分。13、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e14、【解析】利用圓錐的結(jié)構(gòu)特征及側(cè)面積公式即得.【詳解】設(shè)圓錐的底面半徑為r,圓錐的母線為l,又圓錐過軸的截面為正三角形,圓錐的側(cè)面積為,∴,∴.故答案為:.15、【解析】根據(jù)題意,取的中點(diǎn),連接、、、,分析可得四邊形為平行四邊形,則要求的截面就是四邊形,進(jìn)而可得為菱形,連接、,求出、的長,計(jì)算可得答案【詳解】根據(jù)題意,取的中點(diǎn),連接、、、,易得,,則四邊形為平行四邊形,過點(diǎn),,的截面就是,又由正方體為單位正方體,則,則為菱形,連接、,易得,,則,即要求截面的面積為,故答案為:16、①②【解析】①②結(jié)合橢圓方程得到與橢圓參數(shù)的關(guān)系,即可判斷;③④聯(lián)立直線與橢圓方程,利用弦長公式求,即可判斷.【詳解】由題設(shè),且右焦點(diǎn)為,①時直線,故,則符合題設(shè);②時,同①知:符合題設(shè);③時直線,聯(lián)立直線AB與橢圓方程并整理得:,則,同理可得,則,不合題設(shè);④時,同③分析知:,不合題設(shè);故答案為:①②.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準(zhǔn)線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達(dá)定理求解直線的斜率關(guān)系即可證明OM⊥ON試題解析:(Ⅰ)解:因?yàn)閽佄锞€的準(zhǔn)線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設(shè),.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點(diǎn):直線與拋物線的位置關(guān)系;拋物線的標(biāo)準(zhǔn)方程18、(1)(2)【解析】(1)以為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,求出平面的法向量為,再利用公式計(jì)算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計(jì)算即可小問1詳解】解:(1)以為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系所以因?yàn)椋O(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點(diǎn)到平面的距離為,則,所以點(diǎn)到平面的的距離的距離為;【小問2詳解】(2)因?yàn)槠矫?,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值19、(1)(2)【解析】(1)根據(jù)等差數(shù)列的概念及通項(xiàng)公式可得基本量,進(jìn)而可得解.(2)利用等差數(shù)列求和公式計(jì)算,解不等式即可.【小問1詳解】設(shè)等差數(shù)列的公差為,所以,解得,所以數(shù)列的通項(xiàng)公式為;【小問2詳解】由(1)得,所以,解得,所以的最大值為.20、(1),;(2).【解析】(1)求出,成立的等價條件,即可求實(shí)數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當(dāng)真假時,求出的取值范圍,當(dāng)假真時,求出的取值范圍,然后取并集即可得答案【小問1詳解】若命題為真命題,則,解得:,若命題為真命題,則且,,解得,∴,均為真命題,實(shí)數(shù)的取值范圍是,;【小問2詳解】若為真,為假,則、一真一假;①當(dāng)真假時,即“”且“或”,則此時的取值范圍是;當(dāng)假真時,即“或”且“”,則此時的取值范圍是;綜上,的取值范圍是21、(1)y=1;(2)x+y-2=0;(3).【解析】(1)將圓的一般方程化為圓的標(biāo)準(zhǔn)方程,結(jié)合圖形即可求出結(jié)果;(2)根據(jù)題意可知直線過圓心,利用直線的兩點(diǎn)式方程計(jì)算即可得出結(jié)果;(3)設(shè)圓E的圓心E(a,1),根據(jù)題意可得圓E的半徑為,結(jié)合圓與圓的位置關(guān)系和兩點(diǎn)距離公式計(jì)算求出,進(jìn)而得出圓的標(biāo)準(zhǔn)方程.【小問1詳解】圓,即,其圓心為,半徑為1.因?yàn)辄c(diǎn)(2,1)在圓上,如圖,所以切線方程為y=1;【小問2詳解】由題意得,圓的直徑為2,所以直線過圓心,由直線的兩點(diǎn)式方程,得,即直線的方程為x+y-2=0;【小問3詳解】因?yàn)閳AE的圓心在直線y=1上,設(shè)圓E的圓心E(a,1),由圓E與y軸相切,得R=a()又圓E與圓相外切,所以,由兩點(diǎn)距離公式得,所以,解得,所以圓心,,所以圓E的方程為.22、(1);(2)過定點(diǎn),坐標(biāo)為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【小問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論