黑龍江省雞西市雞東縣二中2025-2026學(xué)年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
黑龍江省雞西市雞東縣二中2025-2026學(xué)年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
黑龍江省雞西市雞東縣二中2025-2026學(xué)年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
黑龍江省雞西市雞東縣二中2025-2026學(xué)年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
黑龍江省雞西市雞東縣二中2025-2026學(xué)年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省雞西市雞東縣二中2025-2026學(xué)年數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若1,m,9三個(gè)數(shù)成等比數(shù)列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或22.設(shè),則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.函數(shù)的最小值為()A. B.1C.2 D.e4.已知且,則下列不等式恒成立的是A. B.C. D.5.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.6.已知x,y滿足約束條件,則的最大值為()A.3 B.C.1 D.7.下列說(shuō)法正確的個(gè)數(shù)有()(?。┟}“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實(shí)根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)8.已知兩直線與,則與間的距離為()A. B.C. D.9.已知平面的一個(gè)法向量為,則x軸與平面所成角的大小為()A. B.C. D.10.如圖,在四面體中,,,,分別為,,,的中點(diǎn),則化簡(jiǎn)的結(jié)果為()A. B.C. D.11.19世紀(jì)法國(guó)著名數(shù)學(xué)家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學(xué),推動(dòng)了空間幾何學(xué)的獨(dú)立發(fā)展,提出了著名的蒙日?qǐng)A定理:橢圓的兩條切線互相垂直,則切線的交點(diǎn)位于一個(gè)與橢圓同心的圓上,稱為蒙日?qǐng)A,且該圓的半徑等于橢圓長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的平方和的算術(shù)平方根.若圓與橢圓的蒙日?qǐng)A有且僅有一個(gè)公共點(diǎn),則b的值為()A. B.C. D.12.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點(diǎn) D.2為函數(shù)的極大值點(diǎn)二、填空題:本題共4小題,每小題5分,共20分。13.已知在四面體ABCD中,,,則______14.已知拋物線C的方程為:,F(xiàn)為拋物線C的焦點(diǎn),傾斜角為的直線過(guò)點(diǎn)F交拋物線C于A、B兩點(diǎn),則線段AB的長(zhǎng)為________15.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時(shí)期的數(shù)學(xué)三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動(dòng)點(diǎn)P到兩定點(diǎn)A,B的距離之比滿足(且,t為常數(shù)),則點(diǎn)的軌跡為圓.已知在平面直角坐標(biāo)系中,,,動(dòng)點(diǎn)P滿足,則P點(diǎn)的軌跡為圓,該圓方程為_________;過(guò)點(diǎn)的直線交圓于兩點(diǎn),且,則_________16.已知空間向量,則使成立的x的值為___________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足(1)求;(2)若,且數(shù)列的前n項(xiàng)和為,求證:18.(12分)如圖,拋物線的頂點(diǎn)在原點(diǎn),圓的圓心恰是拋物線的焦點(diǎn).(1)求拋物線的方程;(2)一條直線的斜率等于2,且過(guò)拋物線焦點(diǎn),它依次截拋物線和圓于、、、四點(diǎn),求的值.19.(12分)已知定點(diǎn),動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的軌跡為.(1)求軌跡的方程;(2)若點(diǎn)分別是圓和軌跡上的點(diǎn),求兩點(diǎn)間的最大距離.20.(12分)圓心為的圓經(jīng)過(guò)點(diǎn),,且圓心在上,(1)求圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作直線交圓于且,求直線的方程.21.(12分)已知圓,直線.(1)當(dāng)為何值時(shí),直線與圓相切;(2)當(dāng)直線與圓相交于、兩點(diǎn),且時(shí),求直線的方程.22.(10分)四棱錐,底面為矩形,面,且,點(diǎn)在線段上,且面.(1)求線段的長(zhǎng);(2)對(duì)于(1)中的,求直線與面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】運(yùn)用等比數(shù)列的性質(zhì)可得,再討論,,求出曲線的,,由離心率公式計(jì)算即可得到【詳解】三個(gè)數(shù)1,,9成等比數(shù)列,則,解得,,當(dāng)時(shí),曲線為橢圓,則;當(dāng)時(shí),曲線為為雙曲線,則離心率故選:2、A【解析】根據(jù)兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當(dāng)時(shí),,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A3、B【解析】先化簡(jiǎn)為,然后通過(guò)換元,再研究外層函數(shù)單調(diào)性,進(jìn)而求得的最小值【詳解】化簡(jiǎn)可得:令,故的最小值即為的最小值,是關(guān)于的單調(diào)遞增函數(shù),易知對(duì)求導(dǎo)可得:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增則有:故選:B4、C【解析】∵且,∴∴選C5、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C6、A【解析】由題意首先畫出可行域,然后結(jié)合目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標(biāo)函數(shù)的幾何意義可知目標(biāo)函數(shù)在點(diǎn)A處取得最大值,聯(lián)立直線方程:,可得點(diǎn)A的坐標(biāo)為:,據(jù)此可知目標(biāo)函數(shù)的最大值為:.故選:A【點(diǎn)睛】方法點(diǎn)睛:求線性目標(biāo)函數(shù)的最值,當(dāng)時(shí),直線過(guò)可行域且在y軸上截距最大時(shí),z值最大,在y軸截距最小時(shí),z值最??;當(dāng)時(shí),直線過(guò)可行域且在y軸上截距最大時(shí),z值最小,在y軸上截距最小時(shí),z值最大.7、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(?。╁e(cuò)誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時(shí),,故有實(shí)根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯(cuò)誤.故選:B8、B【解析】把直線的方程化簡(jiǎn),再利用平行線間距離公式直接計(jì)算得解.【詳解】直線的方程化為:,顯然,,所以與間的距離為.故選:B9、C【解析】依題意可得軸的方向向量可以為,再利用空間向量法求出線面角的正弦值,即可得解;【詳解】解:依題意軸的方向向量可以為,設(shè)x軸與平面所成角為,則,因?yàn)?,所以,故選:C10、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C11、B【解析】由題意求出蒙日?qǐng)A方程,再由兩圓只有一個(gè)交點(diǎn)可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日?qǐng)A的半徑,所以蒙日?qǐng)A方程為,因?yàn)閳A與橢圓的蒙日?qǐng)A有且僅有一個(gè)公共點(diǎn),所以兩圓相切,所以,解得,故選:B12、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對(duì)于A,在區(qū)間,,故A不正確;對(duì)于B,在區(qū)間,,故B不正確;對(duì)于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點(diǎn),故C不正確,D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】由線段的空間關(guān)系有,應(yīng)用向量數(shù)量積的運(yùn)算律及已知條件即可求.【詳解】由題設(shè),可得如下四面體示意圖,則,又,,所以.故答案為:2414、8【解析】根據(jù)給定條件求出拋物線C的焦點(diǎn)坐標(biāo),準(zhǔn)線方程,再求出點(diǎn)A,B的橫坐標(biāo)和即可計(jì)算作答.【詳解】拋物線C:焦點(diǎn),準(zhǔn)線方程為,依題意,直線l的方程為:,由消去x并整理得:,設(shè),則,于是得,所以線段AB的長(zhǎng)為8.故答案為:815、①.②.【解析】設(shè),根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設(shè),則,整理得到,即.因?yàn)?,故為的中點(diǎn),過(guò)圓心作的垂線,垂足為,則為的中點(diǎn),則,故,解得,故答案為:,.16、##【解析】利用空間向量垂直的坐標(biāo)表示列方程求參數(shù)x的值.【詳解】由題設(shè),,可得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】(1)先求得,猜想,然后利用數(shù)學(xué)歸納法進(jìn)行證明.(2)利用放縮法證得結(jié)論成立.【小問(wèn)1詳解】依題意,,,,猜想,下面用數(shù)學(xué)歸納法進(jìn)行證明:當(dāng)時(shí),結(jié)論成立,假設(shè)當(dāng)時(shí)結(jié)論成立,即,由,,所以當(dāng)時(shí),有,結(jié)論成立,所以當(dāng)時(shí),.【小問(wèn)2詳解】由(1)得,且為單調(diào)遞增數(shù)列,所以.所以.18、(1)圓的圓心坐標(biāo)為,即拋物線的焦點(diǎn)為,……3分∴∴拋物線方程為……6分

由題意知直線AD的方程為…7分即代入得=0設(shè),則,……11分∴【解析】(1)設(shè)拋物線方程為,由題意求出其焦點(diǎn)坐標(biāo),進(jìn)而可求出結(jié)果;(2)先由題意得出直線的方程,聯(lián)立直線與拋物線方程,求出,再由為圓的直徑,即可求出結(jié)果.【詳解】(1)設(shè)拋物線方程為,圓的圓心恰是拋物線的焦點(diǎn),∴.拋物線方程為:;(2)依題意直線的方程為設(shè),,則,得,,.【點(diǎn)睛】本題主要考查拋物線的方程,以及直線與拋物線的位置關(guān)系;由拋物線的焦點(diǎn)坐標(biāo)可直接求出拋物線的方程;聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理和拋物線定義可求出弦長(zhǎng),進(jìn)而可求出結(jié)果,屬于??碱}型.19、(1)(2)【解析】(1)設(shè)動(dòng)點(diǎn),根據(jù)條件列出方程,化簡(jiǎn)求解即可;(2)設(shè),求出圓心到軌跡上點(diǎn)的距離,配方求最值即可得解.【小問(wèn)1詳解】設(shè)動(dòng)點(diǎn),則,,,又,∴,化簡(jiǎn)得,即,∴動(dòng)點(diǎn)的軌跡E的方程為.【小問(wèn)2詳解】設(shè),圓心到軌跡E上的點(diǎn)的距離∴當(dāng)時(shí),,∴.20、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點(diǎn)坐標(biāo)即為圓心坐標(biāo),再求得半徑后可得圓的標(biāo)準(zhǔn)方程;(2)檢驗(yàn)直線斜率不存在時(shí)是否滿足題意,在斜率存在時(shí)設(shè)方程為,求得圓心到直線的距離,由勾股定理得弦長(zhǎng),由弦長(zhǎng)為8得參數(shù),得直線方程【詳解】(1)由已知,中點(diǎn)坐標(biāo)為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標(biāo)準(zhǔn)方程(2)由可得圓心到直線的距離當(dāng)直線斜率不存在時(shí),其方程為,當(dāng)直線斜率存在時(shí),設(shè)其方程為,則,解得,此時(shí)其方程為,所以直線方程為或.【點(diǎn)睛】方法點(diǎn)睛:本題考查求圓的標(biāo)準(zhǔn)方程,考查直線與圓相交弦長(zhǎng).求弦長(zhǎng)方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長(zhǎng).求直線方程時(shí)注意檢驗(yàn)直線斜率不存在的情形21、(1);(2)或.【解析】(1)將圓的方程表示為標(biāo)準(zhǔn)方程,確定圓心坐標(biāo)與半徑,利用圓心到直線的距離可求得實(shí)數(shù)的值;(2)求出圓心到直線的距離,利用、、三者滿足勾股定理可求得的方程,解出的值,即可得出直線的方程.【詳解】將圓C的方程配方得標(biāo)準(zhǔn)方程為,則此圓的圓心為,半徑為.(1)若直線與圓相切,則有,解得;(2)圓心到直線的距離為,由勾股定理可得,可得,整理得,解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論