版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省焦作市普通高中2025年數(shù)學(xué)高二上期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.當(dāng)實數(shù),m變化時,的最大值是()A.3 B.4C.5 D.62.已知等比數(shù)列的首項為1,公比為2,則=()A. B.C. D.3.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.4.圓和圓的位置關(guān)系是()A.內(nèi)含 B.內(nèi)切C.相交 D.外離5.“”是“直線與直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.77.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件8.直線的傾斜角為()A.30° B.60°C.90° D.120°9.函數(shù)的圖象如圖所示,則下列大小關(guān)系正確的是()A.B.C.D.10.將點的極坐標(biāo)化成直角坐標(biāo)是(
)A. B.C. D.11.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學(xué)組織了“黨史知識競賽”活動,已知該校共有高中學(xué)生1000人,用分層抽樣的方法從該校高中學(xué)生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學(xué)生人數(shù)為()A.960 B.720C.640 D.32012.已知是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的準(zhǔn)線與x軸的交點,F(xiàn)為拋物線的焦點,P是拋物線上的動點,則最小值為_____14.與雙曲線有共同的漸近線,并且經(jīng)過點的雙曲線方程是______15.過點作圓的切線l,直線與l平行,則直線l過定點_________,與l間的距離為____________16.命題“,”的否定是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列和滿足,(1)若,求的通項公式;(2)若,,證明為等差數(shù)列,并求和的通項公式18.(12分)已知三角形內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.19.(12分)如圖所示,在正方體中,點,,分別是,,的中點(1)證明:;(2)求直線與平面所成角的大小20.(12分)已知函數(shù),,其中為自然對數(shù)的底數(shù).(1)若為的極值點,求的單調(diào)區(qū)間和最大值;(2)是否存在實數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.21.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點在線段(不含端點)上運動,設(shè)直線與平面所成角為,求的取值范圍.22.(10分)已知是橢圓的兩個焦點,P為C上一點,O為坐標(biāo)原點(1)若為等邊三角形,求C的離心率;(2)如果存在點P,使得,且的面積等于16,求b的值和a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設(shè),因直線,即表示恒過定點,根據(jù)圓的性質(zhì)可得.故選:D.2、D【解析】數(shù)列是首項為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因為等比數(shù)列的首項為1,公比為2,所以數(shù)列是首項為1,公比為4的等比數(shù)列所以故選:D3、D【解析】設(shè)雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設(shè)雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.4、C【解析】根據(jù)兩圓圓心的距離與兩圓半徑和差的大小關(guān)系即可判斷.【詳解】解:因為圓的圓心為,半徑為,圓的圓心為,半徑為,所以兩圓圓心的距離為,因為,即,所以圓和圓的位置關(guān)系是相交,故選:C.5、A【解析】求出兩直線垂直的充要條件后再根據(jù)充分必要條件的定義判斷.【詳解】由,得,即或所以,反之,則不然所以“”是“直線與直線垂直”的充分不必要條件.故選:A6、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C7、B【解析】根據(jù)垂直關(guān)系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.8、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計算得解.【詳解】直線的斜率,設(shè)其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B9、C【解析】根據(jù)導(dǎo)數(shù)的幾何意義可得答案.【詳解】因為函數(shù)在某點處的導(dǎo)數(shù)值表示的是此點處切線的斜率,所以由圖可得,故選:C10、A【解析】本題考查極坐標(biāo)與直角坐標(biāo)互化由點M的極坐標(biāo),知極坐標(biāo)與直角坐標(biāo)的關(guān)系為,所以的直角坐標(biāo)為即故正確答案為A11、D【解析】由分層抽樣各層成比例計算即可【詳解】設(shè)高二年級學(xué)生人數(shù)為,則,解得故選:D12、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用已知條件求出p,設(shè)出P的坐標(biāo),然后求解的表達(dá)式,利用基本不等式即可得出結(jié)論【詳解】解:由題意可知:,設(shè)點,P到直線的距離為d,則,所以,當(dāng)且僅當(dāng)x時,的最小值為,此時,故答案為:【點睛】本題考查拋物線的簡單性質(zhì)的應(yīng)用,基本不等式的應(yīng)用,屬于中檔題14、【解析】設(shè)雙曲線的方程為,將點代入方程可求的值,從而可得結(jié)果【詳解】設(shè)與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質(zhì),意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設(shè)為,只需根據(jù)已知條件求出即可.15、①.②.##2.4【解析】利用直線與平行,結(jié)合切線的性質(zhì)求出切線的方程,即可確定定點坐標(biāo),再利用兩條平行線間的距離公式求兩線距離.【詳解】由題意,直線斜率,設(shè)直線的方程為,即∴直線l過定點,由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.16、,【解析】根據(jù)全稱命題量詞的否定即可得出結(jié)果.【詳解】命題“”的否定是“,”故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構(gòu)造等比數(shù)列求的通項公式;(2)先由已知得,先分別求出,的通項公式,然后合并可得的通項公式,進(jìn)而可得的通項公式【小問1詳解】當(dāng),時,,所以,即,整理得,所以是以為首項,為公比的等比數(shù)列故,即【小問2詳解】當(dāng)時,由,,得,所以因為,所以,則是以為首項,2為公差的等差數(shù)列,,;是以為首項,2為公差的等差數(shù)列,,綜上所述,所以,,故是以2為首項,1為公差的等差數(shù)列當(dāng)時,,且滿足,所以18、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進(jìn)一步求得面積【小問1詳解】因為,由正弦定理得因為,所以.因為角為鈍角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=19、(1)證明見解析(2)【解析】(1)連接,可得,從而可證四邊形是平行四邊形,從而證明結(jié)論.(2)以為坐標(biāo)原點,分別以,,所在直線為,,軸,建立空間直角坐標(biāo)系,利用向量法求解線面角.【小問1詳解】如圖,連接在正方體中,且因為,分別是,的中點,所以且又因為是的中點,所以,且,所以四邊形是平行四邊形,所以【小問2詳解】以為坐標(biāo)原點,分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,設(shè)為平面的法向量因為,,,所以令,得設(shè)直線與平面所成角為,則因為,所以直線與平面所成角的大小為20、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點求得,進(jìn)而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對導(dǎo)函數(shù),分與進(jìn)行討論,得函數(shù)的單調(diào)性進(jìn)而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當(dāng)時,單調(diào)遞增,得的最大值是,解得,舍去;②時,由,即,當(dāng),即時,∴時,;時,;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當(dāng),即時,在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時.【點睛】本題主要考查了函數(shù)的導(dǎo)數(shù)在求解函數(shù)的單調(diào)性及求解函數(shù)的最值中的應(yīng)用,還考查了函數(shù)的最值求解與分類討論的應(yīng)用,解題時要認(rèn)真審題,注意挖掘題設(shè)中的條件.21、(1)證明見解析(2)【解析】(1)過作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進(jìn)而可得證;(2)以為坐標(biāo)原點,分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,利用坐標(biāo)法求線面夾角的正弦值.【小問1詳解】證明:由已知可得四邊形是等腰梯形,過作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,,則,,又平面,平面,,,,平面,平面,又為矩形,,則平面,而平面,;【小問2詳解】平面,且,以為坐標(biāo)原點,分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,則,,,,,設(shè),則,又,設(shè)平面的法向量為,由,取,得,又,,,,則.22、(1);(2),a的取值范圍為.【解析】(1)先連結(jié),由為等邊三角形,得到,,;再由橢圓定義,即可求出結(jié)果;(2)先由題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年神木市爾林兔鎮(zhèn)中心衛(wèi)生院招聘備考題庫及一套答案詳解
- 2026年摩托車維修(發(fā)動機維修)試題及答案
- 2025年高職機電一體化技術(shù)(PLC編程應(yīng)用)試題及答案
- 2025年大學(xué)區(qū)塊鏈工程(區(qū)塊鏈安全技術(shù))試題及答案
- 2025年中職(康復(fù)輔助)假肢適配試題及答案
- 2025年大學(xué)中國現(xiàn)代文學(xué)(戲劇解讀)試題及答案
- 2025年大學(xué)市場營銷(市場調(diào)研基礎(chǔ))試題及答案
- 2025年中職(安全技術(shù)與管理)安全防護(hù)階段測試題及答案
- 2025年中職服裝工藝(工藝優(yōu)化)試題及答案
- 2025年大學(xué)大一(物聯(lián)網(wǎng)工程)通信操作試題及答案
- 四川省融媒體中心歷年招聘考試真題庫
- 股東代為出資協(xié)議書
- 消防管道拆除合同協(xié)議
- 青少年交通安全法規(guī)
- 《數(shù)據(jù)統(tǒng)計分析課件》
- 2024壓力容器設(shè)計審批考試題庫 判斷題
- OWASP LLM人工智能網(wǎng)絡(luò)安全與治理清單(中文版)
- 鉆機檢驗表格
- GB/T 44143-2024科技人才評價規(guī)范
- 河南省洛陽市2023-2024學(xué)年高二上學(xué)期期末考試英語試題(解析版)
- JGT124-2017 建筑門窗五金件 傳動機構(gòu)用執(zhí)手
評論
0/150
提交評論