河南省鶴壁市浚縣第二高級中學2026屆高一數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
河南省鶴壁市??h第二高級中學2026屆高一數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
河南省鶴壁市??h第二高級中學2026屆高一數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
河南省鶴壁市浚縣第二高級中學2026屆高一數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
河南省鶴壁市??h第二高級中學2026屆高一數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

河南省鶴壁市浚縣第二高級中學2026屆高一數(shù)學第一學期期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“冪函數(shù)為偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知集合,則A B.C. D.3.函數(shù)圖像大致為()A. B.C. D.4.設集合,若,則實數(shù)()A.0 B.1C. D.25.已知直線:和直線:互相垂直,則實數(shù)的值為()A.-1 B.1C.0 D.26.已知a,b,,那么下列命題中正確的是()A.若,則 B.若,則C.若,且,則 D.若,且,則7.已知,則,,的大小關(guān)系為()A. B.C. D.8.已知平面向量,,若,則實數(shù)的值為()A.0 B.-3C.1 D.-19.下列說法正確的有()①兩個面平行且相似,其余各面都是梯形的多面體是棱臺;②經(jīng)過球面上不同的兩點只能作一個大圓;③各側(cè)面都是正方形的四棱柱一定是正方體;④圓錐的軸截面是等腰三角形.A.1個 B.2個C.3個 D.4個10.已知某棱錐的三視圖如圖所示,則該棱錐的表面積為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.筒車是我國古代發(fā)明的一種水利灌溉工具,因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用.明朝科學家徐光啟在《農(nóng)政全書》中用圖1描繪了筒車的工作原理.假定在水流穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.如圖2,將筒車抽象為一個幾何圖形(圓),以筒車轉(zhuǎn)輪的中心為原點,過點的水平直線為軸建立如圖直角坐標系.已知一個半徑為1.6m的筒車按逆時針方向每30s勻速旋轉(zhuǎn)一周,到水面的距離為0.8m.規(guī)定:盛水筒對應的點從水中浮現(xiàn)(時的位置)時開始計算時間,且設盛水筒從點運動到點時所經(jīng)過的時間為(單位:s),且此時點距離水面的高度為(單位:m)(在水面下則為負數(shù)),則關(guān)于的函數(shù)關(guān)系式為___________,在水輪轉(zhuǎn)動的任意一圈內(nèi),點距水面的高度不低于1.6m的時長為___________s.12.函數(shù)的最小正周期為,且.當時,則函數(shù)的對稱中心__________;若,則值為__________.13.函數(shù)的最大值為__________14.若,則__________15.①函數(shù)y=sin2x的單調(diào)增區(qū)間是[],(k∈Z);②函數(shù)y=tanx在它的定義域內(nèi)是增函數(shù);③函數(shù)y=|cos2x|的周期是π;④函數(shù)y=sin()是偶函數(shù);其中正確的是____________16.函數(shù)的圖象恒過定點P,P在冪函數(shù)的圖象上,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知命題p:,q:,若p是q的必要不充分條件,求a的取值范圍18.已知函數(shù)(且)的圖象過點(1)求的值.(2)若.(i)求的定義域并判斷其奇偶性;(ii)求的單調(diào)遞增區(qū)間.19.有一圓與直線相切于點,且經(jīng)過點,求此圓的方程20.已知函數(shù)(1)若,求不等式解集;(2)若,求在區(qū)間上的最大值和最小值,并分別寫出取得最大值和最小值時的x值;(3)若對任意,不等式恒成立,求實數(shù)a的取值范圍21.已知函數(shù).(1)當時,解不等式;(2)設,若,,都有,求實數(shù)a的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)函數(shù)的奇偶性的定義和冪函數(shù)的概念,結(jié)合充分條件、必要條件的判定方法,即可求解.詳解】由,即,解得或,當時,,此時函數(shù)的定義域為關(guān)于原點對稱,且,所以函數(shù)為偶函數(shù);當時,,此時函數(shù)的定義域為關(guān)于原點對稱,且,所以函數(shù)為偶函數(shù),所以充分性成立;反之:冪函數(shù),則滿足,解得或或,當時,,此時函數(shù)為偶函數(shù);當時,,此時函數(shù)為偶函數(shù),當時,,此時函數(shù)為奇函數(shù)函數(shù),綜上可得,實數(shù)或,即必要性成立,所以“”是“冪函數(shù)為偶函數(shù)”的充要條件.故選:C.2、C【解析】分析:先解指數(shù)不等式得集合A,再根據(jù)偶次根式被開方數(shù)非負得集合B,最后根據(jù)補集以及交集定義求結(jié)果.詳解:因為,所以,因為,所以因此,選C.點睛:合的基本運算的關(guān)注點(1)看元素組成.集合是由元素組成的,從研究集合中元素的構(gòu)成入手是解決集合運算問題的前提(2)有些集合是可以化簡的,先化簡再研究其關(guān)系并進行運算,可使問題簡單明了,易于解決(3)注意數(shù)形結(jié)合思想的應用,常用的數(shù)形結(jié)合形式有數(shù)軸、坐標系和Venn圖3、B【解析】先求出函數(shù)的定義域,判斷出函數(shù)為奇函數(shù),排除選項D,由當時,,排除A,C選項,得出答案.【詳解】解析:定義域為,,所以為奇函數(shù),可排除D選項,當時,,,由此,排除A,C選項,故選:B4、B【解析】可根據(jù)已知條件,先求解出的值,然后分別帶入集合A和集合B中去驗證是否滿足條件,即可完成求解.【詳解】集合,,所以,①當時,集合,此時,成立;②當時,集合,此時,不滿足題意,排除.故選:B.5、B【解析】利用兩直線垂直的充要條件即得.【詳解】∵直線:和直線:互相垂直,∴,即.故選:B.6、A【解析】根據(jù)不等式的性質(zhì)判斷【詳解】若,顯然有,所以,A正確;若,當時,,B錯;若,則,當時,,,C錯;若,且,也滿足已知,此時,D錯;故選:A7、B【解析】利用函數(shù)單調(diào)性及中間值比大小.【詳解】,且,故,,故.故選:B8、C【解析】根據(jù),由求解.【詳解】因為向量,,且,所以,解得,故選:C.9、A【解析】根據(jù)棱臺、球、正方體、圓錐的幾何性質(zhì),分析判斷,即可得答案.【詳解】①中若兩個底面平行且相似,其余各面都是梯形,并不能保證側(cè)棱延長線會交于一點,所以①不正確;②中若球面上不同的兩點恰為球的某條直徑的兩個端點,則過此兩點的大圓有無數(shù)個,所以②不正確;③中底面不一定是正方形,所以③不正確;④中圓錐的母線長相等,所以軸截面是等腰三角形,所以④是正確的.故選:A10、D【解析】根據(jù)三視圖可知,幾何體是一條側(cè)棱垂直于底面的四棱錐,底面是邊長為的正方形,如下圖所示,該幾何體的四個側(cè)面均為直角三角形,側(cè)面積,底面積,所以該幾何體的表面積為,故選D.考點:三視圖與表面積.【易錯點睛】本題考查三視圖與表面積,首先應根據(jù)三視圖還原幾何體,需要一定的空間想象能力,另外解本題時,也可以將幾何體置于正方體中,這樣便于理解、觀察和計算.根據(jù)三視圖求表面積一定要弄清點、線、面的平行和垂直關(guān)系,能根據(jù)三視圖中的數(shù)據(jù)找出直觀圖中的數(shù)據(jù),從而進行求解,考查學生空間想象能力和計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.10【解析】根據(jù)給定信息,求出以Ox為始邊,OP為終邊的角,求出點P的縱坐標即可列出函數(shù)關(guān)系,再解不等式作答.【詳解】依題意,點到x軸距離為0.8m,而,則,從點經(jīng)s運動到點所轉(zhuǎn)過的角為,因此,以Ox為始邊,OP為終邊的角為,點P的縱坐標為,于是得點距離水面的高度,由得:,而,即,解得,對于k的每個取值,,所以關(guān)于的函數(shù)關(guān)系式為,水輪轉(zhuǎn)動的任意一圈內(nèi),點距水面的高度不低于1.6m的時長為10s.故答案為:;10【點睛】關(guān)鍵點睛:涉及三角函數(shù)實際應用問題,探求動點坐標,找出該點所在射線為終邊對應的角是關(guān)鍵,特別注意,始邊是x軸非負半軸.12、①.②.【解析】根據(jù)最小正周期以及關(guān)于的方程求解出的值,根據(jù)對稱中心的公式求解出在上的對稱中心;先求解出的值,然后根據(jù)角的配湊結(jié)合兩角差的正弦公式求解出的值.【詳解】因為最小正周期為,所以,又因為,所以,所以或,又因為,所以,所以,所以,令,所以,又因為,所以,所以對稱中心為;因為,,所以,若,則,不符合,所以,所以,所以,故答案為:;.13、【解析】利用二倍角余弦公式,把問題轉(zhuǎn)化為關(guān)于的二次函數(shù)的最值問題.【詳解】,又,∴函數(shù)的最大值為.故答案為:.14、【解析】先求出的值,然后再運用對數(shù)的運算法則求解出和的值,最后求解答案.【詳解】若,則,所以.故答案為:【點睛】本題考查了對數(shù)的運算法則,熟練掌握對數(shù)的各運算法則是解題關(guān)鍵,并能靈活運用法則來解題,并且要計算正確,本題較為基礎.15、①④【解析】①由,解得.可得函數(shù)單調(diào)增區(qū)間;②函數(shù)在定義域內(nèi)不具有單調(diào)性;③由,即可得出函數(shù)的最小正周期;④利用誘導公式可得函數(shù),即可得出奇偶性【詳解】解:①由,解得.可知:函數(shù)的單調(diào)增區(qū)間是,,,故①正確;②函數(shù)在定義域內(nèi)不具有單調(diào)性,故②不正確;③,因此函數(shù)的最小正周期是,故③不正確;④函數(shù)是偶函數(shù),故④正確其中正確的是①④故答案為:①④【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),考查了推理能力與計算能力,屬于基礎題16、64【解析】由題意可求得點,求出冪函數(shù)的解析式,從而求得.【詳解】令,則,故點;設冪函數(shù),則,則;故;故答案為:64.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(-∞,3]【解析】求解不等式,令A={x|};令B={x|};由題可知BA,根據(jù)集合的包含關(guān)系求解即可.【詳解】,令A={x|-2≤x≤10};令B=,p是q的必要不充分條件,∴BA,①B=時,1-a>1+a,即a<0;②B≠時,且1-a=-2和1+a=10不同時成立,解得0≤a≤3;綜上,a≤3﹒18、(1);(2)(i)定義域為,是偶函數(shù);(ii).【解析】(1)由可求得實數(shù)的值;(2)(i)根據(jù)對數(shù)的真數(shù)大于零可得出關(guān)于實數(shù)的不等式,由此可解得函數(shù)的定義域,然后利用函數(shù)奇偶性的定義可證明函數(shù)為偶函數(shù);(ii)利用復合函數(shù)法可求得函數(shù)的增區(qū)間.【詳解】(1)由條件知,即,又且,所以;(2).(i)由得,故的定義域為.因為,故是偶函數(shù);(ii),因為函數(shù)單調(diào)遞增,函數(shù)在上單調(diào)遞增,故的單調(diào)遞增區(qū)間為.19、x2+y2-10x-9y+39=0【解析】法一:設出圓的方程,代入B點坐標,計算參數(shù),即可.法二:設出圓的方程,結(jié)合題意,建立方程,計算參數(shù),即可.法三:設出圓的一般方程,代入A,B坐標,建立方程,計算參數(shù),即可.法四:計算CA直線方程,計算BP方程,計算點P坐標,計算半徑和圓心坐標,建立圓方程,即可【詳解】法一:由題意可設所求的方程為,又因為此圓過點,將坐標代入圓的方程求得,所以所求圓的方程為.法二:設圓的方程為,則圓心為,由,,,解得,所以所求圓的方程為.法三:設圓的方程為,由,,在圓上,得,解得,所以所求圓的方程為.法四:設圓心為,則,又設與圓的另一交點為,則的方程為,即.又因為,所以,所以直線的方程為.解方程組,得,所以所以圓心為的中點,半徑為.所以所求圓的方程為.【點睛】考查了圓方程的計算方法,關(guān)鍵在于結(jié)合題意建立方程組,計算參數(shù),即可,難度中等20、(1)(2)當時函數(shù)取得最小值,,當時函數(shù)取得最大值;(3)【解析】(1)根據(jù),代入求出參數(shù)的值,再解一元二次不等式即可;(2)首先由求出的值,再根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)在給定區(qū)間上的最值;(3)參變分離可得對任意恒成立,再利用基本不等式求出的最小值,即可得解;【小問1詳解】解:因為且,所以,解得,所以,解,即,即,解得,即原不等式的解集為;【小問2詳解】解:因為,所以,所以,所以,因為,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以當時函數(shù)取得最小值,當時函數(shù)取得最大值;【小問3詳解】解:因為對任意,不等式恒成立,即對任意,不等式恒成立,即對任意恒成立,因為當且僅當,即時取等號;所以,即,所以21、(1),(2)【解析】(1)由同角關(guān)系原不等式可化為,化簡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論