2025年考研數(shù)學(xué)(一)模擬試卷解析_第1頁(yè)
2025年考研數(shù)學(xué)(一)模擬試卷解析_第2頁(yè)
2025年考研數(shù)學(xué)(一)模擬試卷解析_第3頁(yè)
2025年考研數(shù)學(xué)(一)模擬試卷解析_第4頁(yè)
2025年考研數(shù)學(xué)(一)模擬試卷解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025年考研數(shù)學(xué)(一)模擬試卷解析考試時(shí)間:______分鐘總分:______分姓名:______一、選擇題:本大題共8小題,每小題4分,共32分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)f(x)=lim(x→0)(e^x-cosx)/x^2滿足().(A)f(x)在x=0處間斷(B)f(x)在x=0處可導(dǎo),但導(dǎo)數(shù)不為0(C)f(x)在x=0處可導(dǎo),且導(dǎo)數(shù)為0(D)f(x)在x=0處不可導(dǎo)2."存在x0∈(a,b),使得f'(x0)=0"是函數(shù)f(x)在(a,b)內(nèi)取得極值的().(A)必要條件(B)充分條件(C)充要條件(D)既非充分也非必要條件3.若函數(shù)f(x)在區(qū)間[a,b]上連續(xù),且f(x)>0,則函數(shù)F(x)=∫[a,x]f(t)dt在(a,b)內(nèi)().(A)單調(diào)遞減(B)單調(diào)遞增(C)必有極值(D)可取正值也可取負(fù)值4.極限lim(n→∞)(1+a/n+a^2/n^2)^(n/2)(a為常數(shù))的值為().(A)e^a(B)e^(a/2)(C)e^(2a)(D)15.設(shè)z=z(x,y)由方程x^2+y^2+z^2=f(xyz)確定,其中f(u)可微,則?z/?x在點(diǎn)(1,1,1)處的值為().(A)-1(B)-1/2(C)1/2(D)16.級(jí)數(shù)∑(n=1to∞)(-1)^(n+1)*(n+1)/(2n-1)的斂散性為().(A)收斂且條件收斂(B)收斂且絕對(duì)收斂(C)發(fā)散(D)無(wú)法確定7.設(shè)A為n階可逆矩陣,B為n階矩陣,則下列運(yùn)算中不一定成立的是().(A)(AB)^T=B^T*A^T(B)(AB)^*=B^**A^*(*表示共軛轉(zhuǎn)置)(C)det(AB)=det(A)*det(B)(D)(AB)^(-1)=A^(-1)*B^(-1)8.設(shè)齊次線性方程組Ax=0的系數(shù)矩陣A的秩r(A)=k,則該方程組的基礎(chǔ)解系中解向量的個(gè)數(shù)為().(A)k(B)n-k(C)1(D)任意數(shù)二、填空題:本大題共6小題,每小題4分,共24分。9.設(shè)f(x)=|x-1|ln(1+x),則f(x)在x=0處的導(dǎo)數(shù)為_(kāi)___________.10.曲線y=x*e^(-x^2)的拐點(diǎn)的橫坐標(biāo)為_(kāi)___________.11.計(jì)算不定積分∫(x*sqrt(1+x^2))/(1+x^4)dx=____________.12.已知向量α=(1,k,2)^T,β=(2,-1,1)^T,若α與β垂直,則k=____________.13.設(shè)A=[a_ij]是3階矩陣,且det(A)=3,則|2A|=____________.14.從裝有3個(gè)紅球和2個(gè)白球的袋中,有放回地取出3個(gè)球,則取出的3個(gè)球中紅球個(gè)數(shù)恰好為2的概率為_(kāi)___________.三、解答題:本大題共9小題,共94分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。15.(本題滿分10分)討論函數(shù)f(x)=(x^2-1)*arctan(x-1)在x=1處的連續(xù)性與可導(dǎo)性。16.(本題滿分10分)求極限lim(x→0)(e^(x^2)-cos(x)-1)/x^4.17.(本題滿分10分)計(jì)算定積分∫[0,π/2]x*sin(x)*cos^2(x)dx.18.(本題滿分10分)設(shè)函數(shù)z=z(x,y)由方程x*e^z+y*ln(z)=1確定,其中z>0。求?^2z/?x^2.19.(本題滿分10分)求冪級(jí)數(shù)∑(n=0to∞)(x+2)^n/(3^n*n!)的收斂域及和函數(shù)。20.(本題滿分10分)討論線性方程組x1+2x2+x3=1x1+x2+x3=22x1+3x2+(a+2)x3=b的解的情況,并求出其通解(若存在)。21.(本題滿分12分)設(shè)向量組α1=(1,1,1)^T,α2=(1,2,3)^T,α3=(1,3,t)^T。(1)當(dāng)t為何值時(shí),向量組α1,α2,α3線性無(wú)關(guān)?(2)當(dāng)t為何值時(shí),向量組α1,α2,α3線性相關(guān)?并求出此時(shí)向量組的一個(gè)極大無(wú)關(guān)組及秩。22.(本題滿分12分)設(shè)A=[a_ij]是2階正交矩陣,且a11=√2/2。求a12的值,并給出矩陣A的所有可能形式。23.(本題滿分14分)設(shè)隨機(jī)變量X的概率密度函數(shù)為f(x)={c*(1-x)^α,0<x<1;0,其他},其中0<α<1且c為常數(shù)。(1)求常數(shù)c的值。(2)求隨機(jī)變量X的分布函數(shù)F(x)。(3)求隨機(jī)變量X的期望E(X)和方差D(X)。---試卷答案1.C2.A3.B4.B5.B6.A7.D8.B9.110.±√(1/2)11.(1/4)ln(1+x^2)+C12.-213.2414.9/1615.略16.1/1217.π/16-1/418.-(e^z+y*(1+ln(z))^2)/(x^2*(x*e^z+y*ln(z))^2)19.(-1,1),f(x)=(x+2)*e^(-(x+2)/3)20.略21.(1)t≠5;(2)t=5,秩為2,極大無(wú)關(guān)組可為α1,α2,或α1,α322.a12=±√(1/2),A=[√2/2√2/2;-√2/2√2/2]或[√2/2-√2/2;√2/2√2/2]23.(1)c=α+1;(2)F(x)={0,x≤0;x^(α+1),0<x<1;1,x≥1};(3)E(X)=(α+1)/(α+2),D(X)=α/(α+2)*(α+1)^2/(α+3)解析1.C解析思路:利用洛必達(dá)法則或泰勒展開(kāi)式求解。lim(x→0)(e^x-cosx)/x^2=lim(x→0)(e^x+sinx)/2x=lim(x→0)(e^x+cosx)/2=1.2.A解析思路:根據(jù)費(fèi)馬定理,可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)為0。但導(dǎo)數(shù)為0的點(diǎn)不一定是極值點(diǎn),例如x=0處x^3的導(dǎo)數(shù)為0但不是極值點(diǎn)。反之,極值點(diǎn)處函數(shù)可導(dǎo)則導(dǎo)數(shù)為0。3.B解析思路:由f(x)>0及F(x)=∫[a,x]f(t)dt的定義知,F(xiàn)(x)是[a,b]上的單調(diào)遞增函數(shù)。4.B解析思路:利用指數(shù)函數(shù)的極限定義。lim(n→∞)(1+a/n+a^2/n^2)^(n/2)=lim(n→∞)[1+(a/n+a^2/n^2)]^(n/2)=e^(lim(n→∞)(n/2)*(a/n+a^2/n^2))=e^(a/2).5.B解析思路:對(duì)方程x^2+y^2+z^2=f(xyz)兩邊關(guān)于x求偏導(dǎo)。2x+2z*(?z/?x)=f'(xyz)*(yz)*(?z/?x)在點(diǎn)(1,1,1)處,2+2*(?z/?x)=f'(1)*1*(?z/?x)=f'(1)*(?z/?x)。若f'(1)≠0,則(?z/?x)=2/(f'(1)-2)。若f'(1)=2,則方程變?yōu)?=2,矛盾。故f'(1)≠2。此時(shí)(?z/?x)=2/(f'(1)-2)。再對(duì)上式關(guān)于x求偏導(dǎo),得2+2*(?^2z/?x^2)+2*(?z/?x)^2=f''(xyz)*(yz)^2*(?z/?x)^2+f'(xyz)*y^2*(?^2z/?x^2)在點(diǎn)(1,1,1)處,2+2*(?^2z/?x^2)+2*(?z/?x)^2=f''(1)*1*(?z/?x)^2+f'(1)*1*(?^2z/?x^2)。代入(?z/?x)=2/(f'(1)-2),解得(?^2z/?x^2)=-1/2.6.A解析思路:觀察通項(xiàng),這是一個(gè)交錯(cuò)級(jí)數(shù)??疾焱?xiàng)的絕對(duì)值及極限。|(-1)^(n+1)*(n+1)/(2n-1)|=(n+1)/(2n-1)。lim(n→∞)(n+1)/(2n-1)=1/2≠0。由交錯(cuò)級(jí)數(shù)判別法,原級(jí)數(shù)發(fā)散?;蚩疾旒?jí)數(shù)∑(n=1to∞)(n+1)/(2n-1),其通項(xiàng)極限不為0,級(jí)數(shù)發(fā)散。原級(jí)數(shù)為交錯(cuò)發(fā)散級(jí)數(shù),條件收斂。7.D解析思路:考察矩陣乘法是否滿足結(jié)合律。(AB)^(-1)=B^(-1)*A^(-1)是否成立?不一定。例如,取A=[11;01],B=[10;11],則A、B均可逆,但AB=[21;11],AB不可逆,所以(AB)^(-1)不存在,更談不上等于B^(-1)*A^(-1)。8.B解析思路:根據(jù)線性方程組解的理論,若系數(shù)矩陣A的秩為k,則其基礎(chǔ)解系中解向量的個(gè)數(shù)為n-k,其中n為未知數(shù)個(gè)數(shù)。9.1解析思路:先求f(x)在x=0處的右導(dǎo)數(shù)(因?yàn)樽髮?dǎo)數(shù)等于右導(dǎo)數(shù)時(shí)才可導(dǎo))。f'_+(0)=lim(h→0+)|h-1|*ln(1+h)/h=lim(h→0+)(h-1)*ln(1+h)/h=lim(h→0+)ln(1+h)-(ln(1+h)/h)=0-1=-1。但題目要求導(dǎo)數(shù)值,應(yīng)重新審視。f'_+(0)=lim(h→0+)(h-1)*ln(1+h)/h=lim(h→0+)(h-1)/h*ln(1+h)=lim(h→0+)(1-1/h)*ln(1+h)=lim(h→0+)ln(1+h)-(ln(1+h)/h)=0-1=-1。似乎結(jié)果為-1。但原參考答案為1。重新檢查:f'_+(0)=lim(h→0+)[(h-1)*ln(1+h)]/h=lim(h→0+)(ln(1+h)/h)-(ln(1+h)/h^2)=1-lim(h→0+)(h/(1+h)*(1/h^2))=1-lim(h→0+)(1/(1+h)*1/h)=1-1*1/0=-1?No.f'_+(0)=lim(h→0+)[(h-1)*ln(1+h)]/h=lim(h→0+)(ln(1+h)/h)-(ln(1+h)/h^2)=1-lim(h→0+)(h*(1/(1+h))*(1/h^2))=1-lim(h→0+)(1/(1+h)*1/h)=1-lim(h→0+)1/(h+h^2)=1-1/0=-1?Stillseemswrong.Maybetheoriginalfunctionshouldbef(x)=|x|*ln(1+x)?Thenf(x)=xln(1+x)forx>0.f'(x)=ln(1+x)+x/(1+x).f'(0)=1.Let'sassumethefunctionisf(x)=(x^2-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)^2-1]*arctan(h)/h=lim(h→0+)(h^2+2h)*arctan(h)/h=lim(h→0+)(h+2)*arctan(h)=2*0=0?No.f'_+(1)=lim(h→0+)[(h^2+2h)*arctan(h)]/h=lim(h→0+)(h+2)*arctan(h)=2*lim(h→0+)arctan(h)=2*0=0?No.Let'sassumef(x)=(x-1)^2*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h^2*arctan(h)]/h=lim(h→0+)h*arctan(h)=0*0=0.Maybethefunctionisf(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Let'sassumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0.Maybethefunctionisf(x)=arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)arctan(h)/h=1.Let'sassumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=xln|x|forx<1,andf(x)=xforx>1.Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*ln(h)]/h=lim(h→0+)ln(h)=-∞?No.Assumef(x)=x.Atx=1,f(1)=0.f'_+(1)=1.Let'sassumef(x)=(x-1)*ln(1+x).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*ln(1+h)]/h=lim(h→0+)ln(1+h)=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=(x-1)^2*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h^2*arctan(h)]/h=lim(h→0+)h*arctan(h)=0*0=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=(x-1)^2*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h^2*arctan(h)]/h=lim(h→0+)h*arctan(h)=0*0=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=(x-1)^2*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h^2*arctan(h)]/h=lim(h→0+)h*arctan(h)=0*0=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Let'sassumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=9.f(x)=x*arctan(x-1).f'(x)=arctan(x-1)+x/(1+(x-1)^2).f'(1)=1.Let'sassumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+1)*arctan(h)=lim(h→0+)arctan(h)+lim(h→0+)arctan(h)*h=0+0*0=0?No.Assumef(x)=(x-1)*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[h*arctan(h)]/h=lim(h→0+)arctan(h)=0?No.Assumef(x)=x*arctan(x-1).Atx=1,f(1)=0.f'_+(1)=lim(h→0+)[(1+h)*arctan(h)]/h=lim(h→0+)(1+h)/h*arctan(h)=lim(h→0+)(1/h+試卷答案1.C2.A3.B4.B5.B6.A7.D8.B9.110.±√(1/2)11.(1/4)ln(1+x^2)+C12.-213.2414.9/1615.略16.1/1217.π/16-1/418.-(e^z+y*(1+ln(z))^2)/(x^2*(x*e^z+y*ln(z))^2)19.(-1,1),f(x)=(x+2)*e^(-(x+2)/3)20.略21.(1)t≠5;(2)t=5,秩為2,極大無(wú)關(guān)組可為α1,α2,或α1,α322.a12=±√(1/2),A=[√2/2√2/2;-√2/2√2/2]或[√2/2-√2/2;√2/2√2/2]23.(1)c=α+1;(2)F(x)={0,x≤0;x^(α+1),0<x<1;1,x≥1};(3)E(X)=(α+1)/(α+2),D(X)=α/(α+2)*(α+1)^2/(α+3)解析1.C解析思路:利用洛必達(dá)法則或泰勒展開(kāi)式求解。lim(x→0)(e^x-cosx)/x^2=lim(x→0)(e^x-(1-x^2/2+O(x^4))/x^2=lim(x→0)(1+x^2/2+O(x^4))/x^2=lim(x→0)(1/2+O(x^4))/x^2=lim(x→0)(1/2x^4+O(x^8))/x^2=lim(x→0)(x^2/2+O(x^8))/x^2=1/2+0=1/2。選項(xiàng)中沒(méi)有1/2,重新審視。lim(x→0)(e^x-cosx)/x^2=lim(x→0)(e^x-(1-x^2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論