版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)據(jù)預(yù)處理的重要性 超參數(shù)搜索空間設(shè)計(jì) 模型訓(xùn)練穩(wěn)定性保障 優(yōu)化算法參數(shù)調(diào)節(jié) 計(jì)算資源合理分配 代碼模塊化設(shè)計(jì) 實(shí)驗(yàn)結(jié)果的嚴(yán)格驗(yàn)證 日志與異常處理 安全與隱私保護(hù) 項(xiàng)目部署與應(yīng)用 系統(tǒng)架構(gòu)設(shè)計(jì) 部署平臺(tái)與環(huán)境準(zhǔn)備 模型加載與優(yōu)化 實(shí)時(shí)數(shù)據(jù)流處理 可視化與用戶界面 GPU/TPU加速推理 系統(tǒng)監(jiān)控與自動(dòng)化管理 自動(dòng)化CI/CD管道 API服務(wù)與業(yè)務(wù)集成 前端展示與結(jié)果導(dǎo)出 20安全性與用戶隱私 20數(shù)據(jù)加密與權(quán)限控制 20故障恢復(fù)與系統(tǒng)備份 20模型更新與維護(hù) 20項(xiàng)目未來改進(jìn)方向 21多模態(tài)數(shù)據(jù)融合 21算法優(yōu)化與加速 21增強(qiáng)學(xué)習(xí)與自適應(yīng)機(jī)制 21 21大規(guī)模分布式訓(xùn)練 21自動(dòng)化數(shù)據(jù)標(biāo)注與增強(qiáng) 21應(yīng)用領(lǐng)域擴(kuò)展 用戶體驗(yàn)與交互優(yōu)化 2安全保障與隱私保護(hù)升級(jí) 22項(xiàng)目總結(jié)與結(jié)論 2程序設(shè)計(jì)思路和具體代碼實(shí)現(xiàn) 2第一階段:環(huán)境準(zhǔn)備 22清空環(huán)境變量 22關(guān)閉報(bào)警信息 23關(guān)閉開啟的圖窗 23清空變量 清空命令行 檢查環(huán)境所需的工具箱 23配置GPU加速 24導(dǎo)入必要的庫 24第二階段:數(shù)據(jù)準(zhǔn)備 24數(shù)據(jù)導(dǎo)入和導(dǎo)出功能,以便用戶管理數(shù)據(jù)集 數(shù)據(jù)處理功能(填補(bǔ)缺失值和異常值的檢測(cè)和處理功能) 數(shù)據(jù)分析(平滑異常數(shù)據(jù)、歸一化和標(biāo)準(zhǔn)化等) 26特征提取與序列創(chuàng)建 26劃分訓(xùn)練集和測(cè)試集 27參數(shù)設(shè)置 27第三階段:算法設(shè)計(jì)和模型構(gòu)建及訓(xùn)練 28第四階段:模型預(yù)測(cè)及性能評(píng)估 32評(píng)估模型在測(cè)試集上的性能(用訓(xùn)練好的模型進(jìn)行預(yù)測(cè)) 行更全面的評(píng)估) 設(shè)計(jì)繪制誤差熱圖 3設(shè)計(jì)繪制殘差圖 3設(shè)計(jì)繪制預(yù)測(cè)性能指標(biāo)柱狀圖 3第五階段:精美GUI界面 34精美GUI界面 34第六階段:防止過擬合及參數(shù)調(diào)整 防止過擬合 超參數(shù)調(diào)整 增加數(shù)據(jù)集 48優(yōu)化超參數(shù) 48完整代碼整合封裝 49算法(WOA)優(yōu)化卷積門控循環(huán)單元進(jìn)行數(shù)據(jù)分類預(yù)測(cè)的詳細(xì)項(xiàng)目實(shí)例項(xiàng)目背景介紹的特征自動(dòng)提取能力和建模能力,廣泛應(yīng)用于圖像識(shí)在眾多深度學(xué)習(xí)模型中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)因其在空間特征提取方面的卓越下且難以保證全局最優(yōu)解。鯨魚優(yōu)化算法(WOA)作為一種新興的群體智能優(yōu)化算法,以其簡(jiǎn)單、高效、易實(shí)現(xiàn)的特點(diǎn),成為優(yōu)化深度學(xué)習(xí)模型超參數(shù)的理想選擇。通過WOA對(duì)本項(xiàng)目旨在基于WOA優(yōu)化卷積門控循環(huán)單元(CNN-GRU)模型,構(gòu)建一個(gè)高效、準(zhǔn)確的分結(jié)合早停法和權(quán)重共享策略,有效縮短模型訓(xùn)練時(shí)間,同時(shí)保證優(yōu)化過程中的模型準(zhǔn)確性與穩(wěn)定性,適合大規(guī)模數(shù)據(jù)應(yīng)用。設(shè)計(jì)通用框架,支持圖像、時(shí)序、文本等多種類型數(shù)據(jù)輸入,具備良好的擴(kuò)展性和適應(yīng)性,適合多領(lǐng)域分類任務(wù)。利用WOA的獨(dú)特圍捕機(jī)制和隨機(jī)搜索策略,提高參數(shù)優(yōu)化的全局搜索能力,避免陷入局部最優(yōu),保證模型調(diào)優(yōu)的效果和可靠性。實(shí)現(xiàn)從數(shù)據(jù)預(yù)處理、模型訓(xùn)練、超參數(shù)優(yōu)化到結(jié)果預(yù)測(cè)的全流程自動(dòng)化,提高項(xiàng)目整體效率和可操作性,減少人工干預(yù)。項(xiàng)目應(yīng)用領(lǐng)域利用CNN-GRU模型對(duì)圖像序列或視頻數(shù)據(jù)進(jìn)行分類和識(shí)別,適用于安防監(jiān)控、人臉識(shí)別、醫(yī)療影像診斷等領(lǐng)域,實(shí)現(xiàn)高效智能化處理。對(duì)金融市場(chǎng)、氣象數(shù)據(jù)、傳感器監(jiān)測(cè)等時(shí)序數(shù)據(jù)進(jìn)行準(zhǔn)確預(yù)測(cè)和分類,助力風(fēng)險(xiǎn)管理、災(zāi)害預(yù)警、設(shè)備故障診斷等應(yīng)用場(chǎng)景。應(yīng)用于文本分類、情感分析、語音識(shí)別等任務(wù),充分發(fā)揮GRU對(duì)序列依賴建模能力,提升文本數(shù)據(jù)理解與處理效率。復(fù)制%數(shù)據(jù)準(zhǔn)備load('data.mat');%假設(shè)數(shù)據(jù)包含X(特征)和Y(標(biāo)簽)%數(shù)據(jù)歸一化%參數(shù)初始化maxIter=50;%最大迭代次數(shù)popSize=20;%群體大小(鯨魚數(shù)量)%定義模型超參數(shù)搜索空間paramBounds=struct('convFilterNum',[16,64],...'convFilterSize',[3,7],...'gruUnits',[32,128],...%初始化鯨魚群體位置(超參數(shù)集合)population=zeros(popSpopulation(i,1)=randi(paramBounds.convFilterpopulation(i,2)=randi(paramBounds.convFilterpopulation(i,3)=randi(paramBounds.gruUnipopulation(i,4)=paramBounds.learningRat(paramBounds.learningRate(2)-paramBounds.learn%適應(yīng)度函數(shù)定義(驗(yàn)證集準(zhǔn)確率)functionfitness=modelFitness(params,X,Y)convFilterNum=round(params(1));convFilterSize=rougruUnits=roconvolutionldLayer(convFilterSizegruLayer(gruUnits,'OutputMfullyConnectedLayer(numoptions=trainingOptions('adam',...'InitialLearnRate',lr,...'MaxEpochs',10,...'MiniBatchSize',64,...'Shuffle','every-epoch',...'Verbose',false,...%數(shù)據(jù)分割(80%訓(xùn)練,20%驗(yàn)證)idx=randperm(size(X,1));trainIdx=idx(1:round(0.8*levalIdx=idx(round(0.8*length(iYTrain=categorical(YYVal=categorical(Y(valIdx));net=trainNetwork(XTrain,YTrain,layer序列建模模塊(GRU):門控循環(huán)單元作為一種改實(shí)現(xiàn)對(duì)長(zhǎng)序列依賴的捕獲。該模塊緊跟CNN輸出,負(fù)責(zé)挖掘時(shí)序數(shù)據(jù)中的動(dòng)態(tài)變化和時(shí)間自動(dòng)調(diào)整CNN-GRU模型的卷積核數(shù)量、濾波器大小、GRU單元數(shù)以及學(xué)習(xí)率等超參數(shù)。該項(xiàng)目模型描述及代碼示例convLayer積層,核大小5,濾波器數(shù)量32,填充保證輸出長(zhǎng)度一致gruLayer=gruLayer(64,'Output數(shù)64,輸出最后時(shí)刻隱藏狀態(tài),適合序列分類fcLayer=fullyConnectedLayer(numClasses);%全softmaxLayer=softmaxLayer;%softmax層,將輸出轉(zhuǎn)換為概率分布classificationLayer=classificationLayer;%分類層,計(jì)算交叉熵?fù)p失sequenceInputLayer(inputSize)%輸入層,接受序列數(shù)據(jù)convLayer%卷積層reluLayer%激活函數(shù)層poolLayer%池化層gruLayer%GRU層,建模序列時(shí)序classificationLayer%分類損失層鯨魚優(yōu)化算法(WOA)超參數(shù)搜索示例functionbestParams=WOA_Optimize(fitnessFunc,bounds,maxIter,dim=size(bounds,1);%參population=rand(popSize,dim).*(bounds(:,2)'-bounds(:,1)’)+bounds(:,1)’;%初始化鯨魚位置bestParams=zeros(1,dim);a=2-iter*(2/maxIter);%線性遞減系數(shù)fitness=fitnessFunc(population(i,:));%計(jì)算適應(yīng)度iffitness<bestFitnessbestFitness=bestParams=populatiifp<0.5ifabs(A)<1D=abs(C*bestParams-populationpopulation(i,:)=bestParams-A*D;randWhale=population(randi(poD=abs(C*randWhale-populatiopopulation(i,:)=randWhaledistanceToBest=abs(bestParamspopulation(i,:)=distanceToBest*exp(1i*2*pi*+bestParams;%螺旋更新population(i,:)=max(min(population(i,:),bounds(:,bounds(:,1)’);%邊界處理項(xiàng)目模型算法流程圖diff復(fù)制數(shù)據(jù)輸入項(xiàng)目應(yīng)該注意事項(xiàng)結(jié)合領(lǐng)域知識(shí)和實(shí)驗(yàn)經(jīng)驗(yàn),動(dòng)態(tài)調(diào)整邊界,提高WOA搜索效率和精度。采用批量歸一化、Dropout等技術(shù),防止過擬合和梯度WOA算法中關(guān)鍵參數(shù)如探索系數(shù)和收斂因子需合理調(diào)節(jié)。引入自適應(yīng)機(jī)制,根據(jù)迭代進(jìn)程果,客觀評(píng)估WOA優(yōu)化優(yōu)勢(shì),避免過擬合和偶然性結(jié)果。項(xiàng)目部署與應(yīng)用優(yōu)先選擇支持GPU加速的服務(wù)器或云平臺(tái)(如AWS、Azure、阿里云),確保深度學(xué)習(xí)模型GPU加速。通過Docker容器化部署,實(shí)現(xiàn)環(huán)境一致性和快速遷移,簡(jiǎn)化系統(tǒng)維使用MATLAB深度學(xué)習(xí)框架將訓(xùn)練完成的WOA-CNN-GRU模型導(dǎo)出為可部署格式,結(jié)合實(shí)時(shí)數(shù)據(jù)流處理可視化與用戶界面構(gòu)建基于Web的交互式可視化界面,實(shí)現(xiàn)數(shù)據(jù)上傳、模型運(yùn)行狀態(tài)展示及結(jié)果分析。集成權(quán)限管理,滿足不同業(yè)務(wù)角色的數(shù)據(jù)訪問和操作GPU/TPU加速推理利用GPU并行計(jì)算能力加速深度模型推理,顯著縮短響應(yīng)時(shí)間。針對(duì)硬件環(huán)境可選配系統(tǒng)監(jiān)控與自動(dòng)化管理API服務(wù)與業(yè)務(wù)集成項(xiàng)目總結(jié)與結(jié)論本項(xiàng)目成功構(gòu)建并實(shí)現(xiàn)了基于鯨魚優(yōu)化算法(WOA)優(yōu)化卷積門控循環(huán)單元(CNN-GRU)拓展更多應(yīng)用場(chǎng)景。安全性和隱私保護(hù)機(jī)制的加強(qiáng)將為項(xiàng)目應(yīng)用于敏感領(lǐng)域程序設(shè)計(jì)思路和具體代碼實(shí)現(xiàn)clearvars;%清除所有變量,釋放內(nèi)存,確保變量不會(huì)影響后續(xù)程序運(yùn)行關(guān)閉報(bào)警信息復(fù)制warning('off','all');%關(guān)閉所有警告信息,避免程序運(yùn)行時(shí)彈出干擾信息關(guān)閉開啟的圖窗復(fù)制closeall;%關(guān)閉所有打開的圖形窗口,避免圖窗混亂影響觀察復(fù)制clear;%清除工作區(qū)中的所有變量,確保環(huán)境干凈清空命令行復(fù)制clc;%清空命令行窗口,方便查看當(dāng)前程序輸出信息檢查環(huán)境所需的工具箱復(fù)制toolboxes=ver;%獲取當(dāng)前安裝的所有工具箱信息toolboxNames={toolboxes.Name};%提取工具箱名稱集合requiredToolboxes={'DeepLearningToolbox','StatisticsandMachineLearningToolbox','ParallelComputingToolbox'};%需要用到的工具箱名稱if~any(contains(toolboxNames,requiredToolboxes{i}))error(['缺少必要工具箱:’,requiredToolboxes{i},’,請(qǐng)先安裝該工具箱’]);%未安裝提示錯(cuò)誤,強(qiáng)制用戶安裝復(fù)制gpuDeviceCount=gpuDeviceCount;%獲取系統(tǒng)中的GPU設(shè)備數(shù)量ifgpuDeviceCount>0disp('未檢測(cè)到GPU設(shè)備,將使用CPU計(jì)算’);%沒有GPU時(shí)提示并使用復(fù)制%無需額外導(dǎo)入,DeepLearningToolbox函數(shù)默認(rèn)可用復(fù)制dataTable=readtable('dataset.csv');%從CSV文件讀取數(shù)據(jù),自動(dòng)識(shí)別列名和數(shù)據(jù)格式%將處理后的數(shù)據(jù)保存為MAT文件,便于快速加載save('processedData.mat','dataTable');%保存為MAT文件以便后續(xù)加載使用復(fù)制%假設(shè)數(shù)據(jù)中包含文本或時(shí)間序列數(shù)據(jù),需要對(duì)時(shí)間序列進(jìn)行窗口化處理windowSize=30;%定義滑動(dòng)窗口長(zhǎng)度為30stepSize=1;%窗口滑動(dòng)步長(zhǎng)為1numSamples=size(dataArra%窗口化處理,生成三維數(shù)據(jù)[窗口大小,特征維度,窗口數(shù)量]numFeatures=size(danumWindows=floor((numSamples-windowSize)/stepSize)+1;%計(jì)算窗口dataWindows=zeros(windowSize,numFeatures窗口數(shù)組idxStart=(i-1)*stepSize+1;%窗口dataWindows(:,:,i)=dataArray(idxStart:idxEnd,:);%切片窗口數(shù)據(jù)存入三維數(shù)組數(shù)據(jù)處理功能(填補(bǔ)缺失值和異常值的檢測(cè)和處理功能)復(fù)制%檢測(cè)缺失值,使用線性插值填補(bǔ)缺失數(shù)據(jù)featData=dataArray(:,feat);%取單個(gè)特征列missingIdx=isnan(featData);%找出缺失值索引ifany(missingIdx)featData(missingIdx)=interp1(findfeatData(~missingIdx),find(missingIdx),'linear','extrap’);%dataArray(:,feat)=featData;%%異常值檢測(cè),使用3倍標(biāo)準(zhǔn)差法剔除異常并用中位數(shù)填補(bǔ)%創(chuàng)建序列輸入格式:時(shí)間步長(zhǎng)×特征維度×樣本數(shù)(之前窗口化數(shù)據(jù)結(jié)構(gòu))%結(jié)合原始序列和平滑標(biāo)準(zhǔn)化特征,形成輸入序列sequenceData=zeros(windowSize,numFeatures,numWindows);%初始化序idxStart=(i-1)*stepSize+1;sequenceData(:,:,i)=stdData(idxStart:idxEnd,:);%%標(biāo)簽對(duì)應(yīng)生成(假設(shè)標(biāo)簽列為第一列)labels=table2arlabelSeq=labels(windowSize:end);trainRatio=0.8;%80%訓(xùn)練,20%numTrain=floor(trainRatio*numWindows);%訓(xùn)練樣本數(shù)XTrain=sequenceData(:,:,1:numTrain);%訓(xùn)練輸入序列YTrain=labelSeq(1:numTrain);%訓(xùn)練標(biāo)簽XTest=sequenceData(:,:,numTrain+1:end);%測(cè)試輸入序列YTest=labelSeq(numTrain+1:end);%測(cè)試標(biāo)簽maxIter=50;%最大迭代popSize=20;%種群規(guī)模(鯨魚數(shù)量)inputSize=numFeatures;%輸入特征維度numHiddenUnits=64;%GRU隱藏單元數(shù)numFilters=32;%CNN卷積%訓(xùn)練參數(shù)maxEpochs=30;%最大訓(xùn)練輪數(shù)miniBatchSize=16;%批量大小%1.定義卷積門控循環(huán)單元(CNN-GRU)網(wǎng)絡(luò)結(jié)構(gòu)函數(shù)functionlayers=createCNN_GRU(numFilters,filterSize,numHiddensequenceInputLayer(inputSize,'Name','input')%特征維度convolution1dLayer(filterSize,numFilters,'P'Name’,'convl')%1D卷積層,提取局部時(shí)序特征,卷積核大小filterSize,數(shù)量numFilters,same填充保持尺寸batchNormalizationLayer('Name','batchnorm1')%定訓(xùn)練,加快收斂reluLayer('Name','relul')%ReLU激活層,引入非線性,防止梯度gruLayer(numHiddenUnits,'OutputMode’,'last','NaGRU層,記憶時(shí)間序列信息,隱藏單元數(shù)為numHiddenUnits,輸出最后時(shí)間步fullyConnectedLayer(numClasses,'Name’,'fc')%全softmaxLayer('Name','softmax')%SoftmaxclassificationLayer('Name','classoutput')%分類輸出%2.定義WOA優(yōu)化函數(shù),用于尋找最佳超function[bestParams,bestAcc]=WOA_optimize(XTrain,YTrain,XinputSize,numClasses,maxI%超參數(shù)搜索空間邊界:numFilters[8,64],filterSize[ub=[64,5,128];%上界%初始化鯨魚群位置(解),每行一個(gè)個(gè)體,三維參數(shù)Positions(:,i)=1b(i)+(ub(%初始化適應(yīng)度(準(zhǔn)確率,越大越好)發(fā)numFilters=round(Positions(i,1)numHiddenUnits=round(Positions(i,3));layers=createCNN_GRU(numFilters,filterSiznumHiddenUnits,inputSize,numCloptions=trainingOptions('adam',...'MaxEpochs',10,...%為加快訓(xùn)練僅用10輪'MiniBatchSize',16,...'Shuffle','every-epoch',...'ValidationData',{XVal,YVal},...'ValidationFrequency',30,...'Verbose',false,...net=trainNetwork(XTrain,YTrain,layers,options);%YPred=classify(net,XVal,'MiniBatchPositions(i,:)=max(Positions(Positions(i,:)=min(Positions(%3.劃分訓(xùn)練集為訓(xùn)練和驗(yàn)證子集(WOA需要驗(yàn)證集評(píng)估)numTrainSamples=sizenumVal=floor(valRatio*numTrtrainIdx=idx(numVal+[bestParams,bestAcc]=WOA_optimize(YValSub,inputSize,numel(unique(YTrain)),maxIter,%5.用最優(yōu)參數(shù)訓(xùn)練最終模型bestNumFilters=round(bestPabestFilterSize=round(bestParams(2));bestNumHiddenUnits=round(bestParams(3));finalLayers=createCNN_GRU(bestNbestNumHiddenUnits,inputSize,numel(unique(YTrafinalOptions=trainingOptions('adam',...'MiniBatchSize’,miniBatchSize,...'Shuffle’,'every-epoch',...'Verbose',true,...finalNet=trainNetwork(XTrain,YTrain,finalLayers,finalOptions);%評(píng)估模型在測(cè)試集上的性能(用訓(xùn)練好的模型進(jìn)行預(yù)測(cè))YPredTest=classify(finalNet,XTest,'MiniBatchSize',mini使用訓(xùn)練好的模型對(duì)測(cè)試集進(jìn)行分類預(yù)測(cè)YTestNumeric=grp2idx(YTest);%將測(cè)試標(biāo)簽轉(zhuǎn)換為數(shù)字索引形式,便于計(jì)算指標(biāo)YPredNumeric=grp2idx(YPredTest);%將預(yù)測(cè)標(biāo)簽轉(zhuǎn)復(fù)制%將類別轉(zhuǎn)為數(shù)值后計(jì)算誤差errors=YPredNumeric-YTestNumeric;%預(yù)測(cè)誤差向量%MSE:均方誤差MSE=mean(errors.^2);%平均誤差平方,衡量預(yù)測(cè)偏差大小MAE=mean(abs(errors));%平均絕對(duì)誤差,衡量預(yù)測(cè)偏差的絕對(duì)值大小%MAPE:平均絕對(duì)百分比誤差(分母非零樣本)nonZeroIdx=YTestNumeric~=0;%非零標(biāo)簽索引MAPE=mean(abs(errors(nonZeroIdx)./YTestNumeric(nonZeroId百分比誤差MBE=mean(errors);%誤差均值,顯示系統(tǒng)性偏差方向%R2:決定系數(shù),擬合優(yōu)度指標(biāo)SStot=sum((YTestNumeric-mean(YTestNumeric)).^2)SSres=sum(errors.^2);%殘差平方和R2=1-SSres/SStot;%R2值,越接近1越好%VaR(風(fēng)險(xiǎn)價(jià)值)計(jì)算(這里用誤差絕對(duì)值的95%分位數(shù)表示)VaR=quantile(abs(errors),0.95);%誤差絕對(duì)值95%分位數(shù),反映極端誤%ES(期望短缺),VaR以上誤差的平均值ES=mean(abs(ererrorMatrix=abs(errors);%絕對(duì)誤差構(gòu)成矩陣imagesc(errorMatrix');%顯示誤差矩陣的熱圖(轉(zhuǎn)置更直觀)colorbar;%添加顏色條,標(biāo)示誤差大小title('預(yù)測(cè)誤差熱圖’);%圖標(biāo)題xlabel('樣本編號(hào)’);%x軸標(biāo)簽ylabel('誤差值’);%y軸標(biāo)簽scatter(1:length(errors),errors,'filled');%殘差plot([1length(errors)],[00],'r--','LineWidttitle('殘差圖’);%標(biāo)題ylabel('殘差值(預(yù)測(cè)-真實(shí))’);%y軸metrics=[MSE,MAE,MAPE,MBE,R2,VaR,ES];%性能指標(biāo)數(shù)組metricNames={'MSE','MAE','MAPE(%)’,'MBE','R^2','VaR','ES'set(gca,'XTickLabel',metricNames,'XTick',1:numel(metricNames));%置x軸刻度標(biāo)簽第五階段:精美GUI界面精美GUI界面'NumberTitle','off',...'MenuBar','none’,...'ToolBar','none’,...'Resize’,'on',...handles.trainInfo=[];%數(shù)據(jù)文件選擇按鈕handles.btnLoadData=uicontrol('Style','pushbutton',...'String','選擇數(shù)據(jù)文件’,...'FontSize',11,...'Position',[3054012030],...%數(shù)據(jù)文件路徑顯示文本框(只讀)handles.txtDataPath=uicontrol('Style','edit',...'Position',[16054070030],...'Enable’,'inactive',...'BackgroundColor','white',...%模型參數(shù)設(shè)置區(qū)標(biāo)簽uicontrol('Style','text',...'String','模型參數(shù)設(shè)置’,...'FontSize',13,'FontWeight','bold',...%學(xué)習(xí)率標(biāo)簽及輸入框uicontrol('Style','text',...'String','學(xué)習(xí)率(learningrate):',...'FontSize',11,...handles.editLearningRate=uicontrol('Style','edit',...'String','0.001',...25],...%批量大小標(biāo)簽及輸入框uicontrol('Style’,'text',...'FontSize',11,...handles.editBatchSize=uicontrol('Style’,'edit',...'String','16',...%迭代次數(shù)標(biāo)簽及輸入框uicontrol('Style’,'text',...'FontSize’,11,...handles.editMaxEpochs=uicontrol('Style’,'edit',...'String',’30',...uicontrol('Style’,'text',...'String','WOA迭代次數(shù):',...'FontSize',11,...handles.editWOAIter=uicontrol('Style’,'edit',...'String',’50',...'Position',[1404108025],...uicontrol('Style’,'text',...'String','WOA種群規(guī)模:',...'FontSize',11,...handles.editWOAPop=uicontrol('Style','edit',...'String','20',...'Position',[3604108025],...%模型訓(xùn)練按鈕handles.btnTrain=uicontrol('Style’,'pushbutton',...'String','開始訓(xùn)練’,...'FontSize',12,...'Position',[48041012030],...%訓(xùn)練狀態(tài)顯示文本框(多行,禁編輯)handles.txtTrainStatus=uicontrol('Style','edit',...'Max',2,...'Enable’,'inactive’,...'BackgroundColor','white',...'FontSize’,10,...%預(yù)測(cè)結(jié)果顯示區(qū)域標(biāo)簽uicontrol('Style','text''String',’預(yù)測(cè)結(jié)果與評(píng)估指標(biāo)’,...'FontSize’,13,'FontWeight','bold',...%預(yù)測(cè)準(zhǔn)確率顯示文本框uicontrol('Style’,'text''String',’測(cè)試準(zhǔn)確率:',...'FontSize',11,...handles.txtAccuracy=uicontrol('Style’,'edit',...'String','',...'Position',[12020010025],...'Enable’,'inactive’,...'BackgroundColor','white',...%其他評(píng)估指標(biāo)顯示(MSE,MAE,R2等)metricLabels={'MSE:','MAE:','MAPE(%):','MBE:','R^2:handles.txtMetrics=gobjects(length(metricLuicontrol('Style’,'text',...'String',metricLabels{i},...'FontSize',11,...'Position',[30handles.txtMetrics(i)=uicontrol('Style','edit',...'String',’’,...25],...'Enable’,'inactive’,...'white',...%結(jié)果導(dǎo)出按鈕=uicontrol('Style’,'pushbut'String',’導(dǎo)出結(jié)果’,...'FontSize’,12,...'Position',[305010030],...'Callback',@exportRe=uicontrol('Style','text',...'String','等待用戶操作...',...'FontSize',10,...'Position',[1505071030],...%動(dòng)態(tài)布局調(diào)整回調(diào)函數(shù)set(hFig,'SizeChangedFcn',@(src,event)resize%參數(shù)合法性校驗(yàn)lr=str2double(get(handles.editLearningRate,'String'));batchSize=str2double(get(handles.editBatchSize,'String'));maxEpochs=str2double(get(handles.editMaxEpochs,'String’));WOAIter=str2double(get(handles.editWOAIter,'String'));WOAPop=str2double(get(handles.editWOAPop,'String'));ifany(isnan([1r,batchSize,maxEpochs,WOAIter,WOAPop]))lr<=0||batchSize<=0||maxEpochs<=0||WOerrordlg('請(qǐng)輸入有效的正數(shù)參數(shù)!’,’參數(shù)錯(cuò)誤’);%參數(shù)無效%顯示訓(xùn)練狀態(tài)set(handles.txtTrainStatus,'String',’開始數(shù)據(jù)預(yù)處理和模型訓(xùn)練,請(qǐng)稍候...');%訓(xùn)練狀態(tài)提示%數(shù)據(jù)預(yù)處理一此處以前面代碼為例,轉(zhuǎn)換為訓(xùn)練和測(cè)試集%數(shù)據(jù)預(yù)處理:按前述邏輯進(jìn)行窗口化、歸一化、標(biāo)簽提取%取數(shù)值部分,排除標(biāo)簽列為第一列dataArray=table2array(dataTable(:,2:end));labels=table2arnumSamples=size(danumFeatures=size(danumWindows=floor((numSamples-windowSize)/stsequenceData=zeros(windowSize,numFeatures,numWindows);sequenceData(:,:,i)=dataArray(i%歸一化minVals=min(dataArray);sequenceData(:,i,:)=(sequenceData(/(maxVals(i)-minVals(i)+%劃分訓(xùn)練測(cè)試集80%訓(xùn)練20%測(cè)試numTrain=floor(trainRatio*numWindows);XTrain=sequenceData(:,:,1:numTraYTrain=labelSeq(1:numTXTest=sequenceData(:,:,numTrain+1:eYTest=labelSeq(numTrain+1%將標(biāo)簽轉(zhuǎn)換為分類類別handles.XTrain=XTrain;handles.YTrain=YTrset(handles.txtTrainStatus,'String',’數(shù)據(jù)預(yù)處理完成,開始WOA優(yōu)化CNN-GRU模型參數(shù)...');errordlg([’數(shù)據(jù)預(yù)處理失?。?,ME.message],'錯(cuò)誤’);%調(diào)用WOA優(yōu)化函數(shù),注意這里簡(jiǎn)化為局部函數(shù)numClasses=numel(categorie%劃分訓(xùn)練子集和驗(yàn)證集(20%驗(yàn)證)numTrainSamples=size(numVal=floor(valRatio*numTrainSidxShuffle=randperm(numTrainSamples);valIdx=idxShuffle(1:numVal);trainIdx=idxShuffle(numVal+1:end);XTrainSub=XTrain(:,:,trainIdx);YTrainSub=YTrain(traiXValSub=XTrain(:,:,valYValSub=YTrain(valIdx);%使用之前定義的WOA優(yōu)化函數(shù)(放在GUI文件末尾,確??烧{(diào)用)[bestParams,bestAcc]=WOA_optiXValSub,YValSub,inputSize,numClasses,maxIter,p%顯示優(yōu)化完成信息set(handles.txtTrainStatus,'String',sprintf('WOA優(yōu)化完成,最佳驗(yàn)證準(zhǔn)確率:%.4f,開始最終訓(xùn)練...',bestAcc));%使用最佳參數(shù)訓(xùn)練最終模型bestNumFilters=round(bestParams(1));bestFilterSize=round(bestPabestNumHiddenUnits=round(bestParams(3));layers=createCNN_GRU(bestNumFilters,bestFilterSize,bestNumHiddenUnits,inputSize,numClasoptions=trainingOptions('adam3,...'MaxEpochs',maxEpochs,...'MiniBatchSize',batchSize,...'Shuffle’,'every-epoch',...'Verbose',false,...net=trainNetwork(XTrain,YTrain,layers,options);%預(yù)測(cè)測(cè)試集YPred=classify(net,XTest,'MiniBatchSize’,batchSi%計(jì)算準(zhǔn)確率set(handles.txtAccuracy,'String',num2%計(jì)算并顯示其他指標(biāo)YPredNum=grp2idx(errors=YPredNum-MAE=mean(abs(erMAPE=mean(abs(errors(nonZeroIdx)./YTestNum(nonZSStot=sum((YTestNum-mean(YTestNum)).^2);R2=1-SSres/SStot;VaR=quantile(abs(errors),0.95);ES=mean(abs(errors(abs(errors)>VaR)));metrics=[MSE,MAE,MAPE,MBE,R2,VaR,ES];fori=1:length(set(handles.txtMetrnum2str(metrics(i),’%.4set(handles.txtTrainStatus,'String','訓(xùn)練完成,結(jié)果已更errordlg([’訓(xùn)練失?。?,ME.message],'錯(cuò)誤’);functionexportResultsCallback(~,~)ifisempty()msgbox('請(qǐng)先訓(xùn)練模型后再導(dǎo)出結(jié)果?!?’提示’,'warn’);[file,path]=uiputfile('*.mat',’保存訓(xùn)練模型及結(jié)果’);ifisequal(file,0)return;%用戶取消保存save(fullfile(path,file),'handles');%保存所有handles數(shù)據(jù),包括模型和結(jié)果msgbox('模型及結(jié)果保存成功?!?’提示’,'help');%動(dòng)態(tài)調(diào)整控件位置大小figPos=get(hFig,'Positiowidth=figPos(3);height=figPos(4%數(shù)據(jù)路徑文本寬度調(diào)整set(handles.txtDataPath,'Position',[160height-60%訓(xùn)練狀態(tài)框?qū)挾群透叨日{(diào)整set(handles.txtTrainStatus,'Position',[30height-320width-60%預(yù)測(cè)指標(biāo)框布局fori=1:length(handles.set(handles.txtMetrics(i),'Position',[120yPos%輔助函數(shù):WOA優(yōu)化函數(shù)和CNN-GRU創(chuàng)建函數(shù)functionlayers=createCNN_GRU(numFilters,filterSizsequenceInputLayer(inputSiconvolution1dLayer(filterSize,numFilters,'PbatchNormalizationLayer('Name','batchnreluLayer('Name’,'regruLayer(numHiddenUnits,'OutputMode’,'last','fullyConnectedLayer(numClasclassificationLayer('Name'function[bestParams,bestAcc]=WOA_optimize(XTrain,YTrain,XVal,YVal,inputSize,numClasses,maxIPositions(:,i)=lb(i)+(ub(i)-1b(i))*rand(bestParams=zeros(1,3);numFilters=round(PositifilterSize=round(Positions(i,2));numHiddenUnits=round(Positions(i,3));layers=createCNN_GRU(numFilters,filterSiznumHiddenUnits,inputSize,numCloptions=trainingOptions('adam',...'MaxEpochs',10,...'MiniBatchSize’,16,...'Shuffle','every-epoch',...'ValidationData',{XVal,YVal},...'Verbose',false,...net=trainNetwork(XTrain,YTrain,layers,optYPred=classify(net,XVal,'MiniBatchSize',16);ifacc>bestAccifp<0.5ifabs(A)<1Positions(i,:)=bestParamsD=abs(C*X_rand-Positions(i,:));Positions(i,:)=D*exp(b*1)*cos(2*pi*1)+bePositions(i,:)=max(PositionPositions(i,:)=min(Positions(第六階段:防止過擬合及參數(shù)調(diào)整防止過擬合functionlayers=createCNN_GRU(numFilters,filterSizconvolution1dLayer(filterSize,numFilters,'P'Name’,'conv1',...用He初始化權(quán)重batchNormalizationLayer('Name','batchnodropoutLayer(0.3,'Name','dropout1')%Dropout層,丟棄30%的gruLayer(numHiddenUnits,'OutputMode','last’,'NGRU層,捕捉時(shí)間序列長(zhǎng)依賴dropoutLayer(0.3,'Name','dropout2')%GRU后再加一層Dropout,fullyConnectedLayer(numClasses,'Name','fc',...'WeightLearnRateFactor',1,'BiasLearnRateFactor',1,...'WeightL2Factor',0.01)%全連接層,帶有L2正則化因子0.01softmaxLayer('Name','softmax')%SoftmaxclassificationLayer('Name','classoutput')%交叉熵?fù)p失層%在訓(xùn)練選項(xiàng)中添加EarlyStopping監(jiān)控驗(yàn)證集性能,實(shí)現(xiàn)早停options=trainingOptions('adam,...'MaxEpochs',maxEpochs,...'MiniBatchSize',batchSize,...'Shuffle','every-epoch',...'ValidationData',{XValSub,YValSub},...'ValidationFrequency',30,...'Verbose',true,...'ExecutionEnvironment','auto',...'Plots','training-progress',...'OutputFcn',@(info)stopIfNoImprovement(info,5));%若驗(yàn)證集連續(xù)5functionstoppersistentbestValAccifinfo.State=="start"elseifinfo.State=="iteration"if~isempty(info.ValidationAccuracy)ifinfo.ValidationAccuracy>bestValAccbestValAcc=info.ValidationAccuracy;ifwait>=N超參數(shù)調(diào)整復(fù)制%采用K折交叉驗(yàn)證調(diào)整超參數(shù)functionbestHyperparams=crossValidateHyperparams(data,labelindices=crossvalind('Kfold',labels,kFold);%生成k折索引bestHyperparams=struct('numFilters',32,'filterSize’,3,fornumHiddenUnits=[32,64,128]XTrainCV=data(:,:,trainIdx);YTrainCV=labels(traiXTestCV=data(:,:,teslayers=createCNN_GRU(numFnumHiddenUnits,size(data,2),numel(unique(laboptions=trainingOptions('adam',...'MaxEpochs',10,...'MiniBatchSize',16,...'Verbose',false,...net=trainNetwork(XTrainCV,YTraiYPred=classify(net,XTestCV);acc=sum(YPred==YTestCV)/numel(YTestCV);meanAcc=accSum/kFold;ifmeanAcc>bestAccbestHyperparams.numFilters=numFilters;bestHyperparams.filterSize=fbestHyperparams.numHiddenUnits=numHiddenUnits;增加數(shù)據(jù)集function[XTrainFull,YTrainFull]=combineDXTrainFull=cat(3,XTrainFull,datasets{i}.XTrain);YTrainFull=[YTrainFul1;datasets{i}.優(yōu)化超參數(shù)%如:輸入延遲inputDelay[1,5],反饋延遲feedbackDelay[1,5]%示例參數(shù)邊界擴(kuò)展functionWOA_CNN_GRU_Clas%%環(huán)境準(zhǔn)備clearvars;%清除所有變量,確保環(huán)境干凈無殘留影響warning('off','all');%關(guān)閉所有警告信息,避免干擾輸出closeall;%關(guān)閉所有圖形窗口,保持界面整潔%檢查必要工具箱requiredToolboxes={'DeepLearningToolbox','StatisticsandMachineLearningToolbox','ParallelComputinV=ver;%獲取已安裝工具箱信息installedToolboxes={v.Name};%提取名稱列表if~any(contains(installedToolboxes,requiredToolboxes{k}))error(['缺少工具箱:',requiredToolboxes{k},’請(qǐng)先安裝后再運(yùn)行’]);%無必要工具箱報(bào)錯(cuò)停止執(zhí)行ifgpuDeviceCount>0gpuDevice(1);%激活第一個(gè)GPU,提升深度學(xué)習(xí)計(jì)算速度disp('未檢測(cè)到GPU設(shè)備,使用CPU進(jìn)行計(jì)算’);%無GPU時(shí)提示使用%%數(shù)據(jù)準(zhǔn)備%導(dǎo)入數(shù)據(jù)文件,自動(dòng)根據(jù)擴(kuò)展名選擇讀取方式dataFile='dataset.csv';%請(qǐng)?zhí)鎿Q為ifendsWith(dataFile,'.csv')loadedData=load(dataFile);%加載MAT文件vars=fieldnames(loadedData);%處理數(shù)據(jù),轉(zhuǎn)換為數(shù)值矩陣和標(biāo)簽數(shù)組dataArray=table2array(dataTable(:,2:end));%特征數(shù)據(jù),從第2列開始labels=table2array(dataTable(:,1));%標(biāo)簽列為第1列%檢測(cè)并填補(bǔ)缺失值,使用線性插值X=dataAnanIdx=isnan(x);%找缺失值位置ifany(nanIdx)x(nanIdx)=interp1(find(~nanIdx),x(~nanIdx),find(ndataArray(:,feat)=x;%更新特征列%異常值檢測(cè)與處理,3倍標(biāo)準(zhǔn)差法,替換為中位數(shù)ifany(outlierIdx)x(outlierIdx)=med;%替換異常值%時(shí)間序列窗口化參數(shù)windowSize=30;%窗口長(zhǎng)度為30stepSize=1;%窗口滑動(dòng)步長(zhǎng)為1numSamples=size(danumFeatures=size(danumWindows=floor((numSamples-windowSize)/stepSize)+1;%構(gòu)造三維數(shù)據(jù)窗口[時(shí)間步長(zhǎng),特征數(shù),窗口個(gè)數(shù)]sequenceData=zeros(windowSize,numFeatures,numWindows);idxEnd=idxStart+windowSize-1;sequenceData(:,:,i)=dataArray(i%對(duì)每個(gè)特征做歸一化minVals=min(dataArray);sequenceData(:,feat,:)=(sequminVals(feat))./(maxVals(feat)-minVals(fe%標(biāo)簽對(duì)應(yīng)窗口結(jié)束時(shí)間點(diǎn)labelSeq=labels(windowSize:end);%轉(zhuǎn)為分類變量labelSeqCat=categorical(la%劃分訓(xùn)練集和測(cè)試集(80%訓(xùn)練,20%測(cè)試)numTrain=floor(trainRatio*numWindows);XTrain=sequenceData(:,:,YTrain=labelSeqCat(1:numTrain);XTest=sequenceData(:,:,numTrain+1:end);YTest=labelSeqCat(numTlb=[8,2,16];%numFilters,filterSize[bestParams,bestAcc]=WOA_optpopSize,lb,ub,numFeatures,numel(categories(YTrabestNumFilters=round(bestPabestNumHiddenUnits=round(bestParams(3));layers=createCNN_GRU(bestNumFilters,bestFilterSize,bestNumHiddenUnits,numFeatures,numel(categories(YTr%訓(xùn)練選項(xiàng),含早停與L2正則化options=trainingOptions('adam',...'MaxEpochs',30,...'MiniBatchSize',16,...'Shuffle','every-epoch',...'ValidationData',{XTest,YTest},...'ValidationFrequency',30,...'Verbose',true,...'Plots','training-progress',...'ExecutionEnvironment','auto',...'L2Regularization',0.01,...'OutputFcn',@(info)stopIfNoImprovement(info,5));%驗(yàn)證集5%訓(xùn)練最終模型net=trainNetwork(XTrain,YTrain,layers,options);%%模型預(yù)測(cè)及性能評(píng)估YPred=classify(net,XTest,'MiniBatchSize',16);%轉(zhuǎn)換為數(shù)值標(biāo)簽用于誤差計(jì)算%計(jì)算性能指標(biāo)nonZeroIdx=YTestNum~=0;MAPE=mean(abs(errors(nonZeroIdx)./YTestNum(nonZeroIdx)))*100;VaR=quantile(abs(errors),0.95);ES=mean(abs(errors(abs%顯示指標(biāo)fprintf('MSE:%.4f,MAE:%.4f,MAPE:%.4f%%,MBE:VaR:%.4f,ES:%.4f\n',...MSE,MAE,MAPE,MBE,R2,Va%%精美GUI界面集成(簡(jiǎn)易版)%簡(jiǎn)單啟動(dòng)GUI方便演示W(wǎng)OA_CNN_GRU_GUI(net,XTest,%%內(nèi)部函數(shù)定義functionlayers=createCNN_GRU(numFilters,filterSize,numHiddenUnits,inputSize,numCl%構(gòu)建CNN-GRU網(wǎng)絡(luò)結(jié)構(gòu),含Dropout和L2正則化防過擬合sequenceInputLayer(inputSize,'Name','in
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學(xué)教師教學(xué)評(píng)價(jià)指標(biāo)體系解析
- 幼兒園科學(xué)課程設(shè)計(jì)與教學(xué)反思
- 現(xiàn)代企業(yè)人力資源績(jī)效考核制度
- 2025年全國(guó)康復(fù)醫(yī)學(xué)技士中級(jí)職稱考試真題及模擬題庫(附答案)
- 2025年國(guó)家公務(wù)員考試行測(cè)真題及答案完整版
- 2025年妊高癥診療指南
- 八年級(jí)下冊(cè)音樂課程教學(xué)詳案
- 企業(yè)環(huán)境保護(hù)責(zé)任制度及執(zhí)行細(xì)則
- 初中語文公開課教學(xué)活動(dòng)方案范本
- 2023全國(guó)高考語文試題真題解析
- 醫(yī)院危險(xiǎn)品管理培訓(xùn)制度
- 2026年江西科技學(xué)院?jiǎn)握新殬I(yè)技能筆試備考試題含答案解析
- 深度解析(2026)《MZT 238-2025 監(jiān)測(cè)和定位輔助器具 毫米波雷達(dá)監(jiān)測(cè)報(bào)警器》
- 2025-2026學(xué)年小學(xué)美術(shù)湘美版(2024)四年級(jí)上冊(cè)期末練習(xí)卷及答案
- 遼寧省大連市2026屆高三上學(xué)期1月雙基模擬考試語文試題(含答案)
- 2025年腫瘤科年度工作總結(jié)匯報(bào)
- 浙江省寧波市2025-2026學(xué)年八年級(jí)上數(shù)學(xué)期末自編模擬卷
- 2025版《煤礦安全規(guī)程》學(xué)習(xí)與解讀課件(監(jiān)控與通信)
- 口譯課件05教學(xué)課件
- 2024年河南農(nóng)業(yè)大學(xué)輔導(dǎo)員考試真題
- 2026年九江職業(yè)大學(xué)單招職業(yè)適應(yīng)性考試題庫帶答案解析
評(píng)論
0/150
提交評(píng)論