版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆延安市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角A,B,C所對的邊分別為a,b,c,已知,則的面積為()A. B.C. D.2.已知等差數(shù)列中,,則()A.15 B.30C.45 D.603.一動圓與圓外切,而與圓內(nèi)切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支4.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.設(shè)是橢圓的兩個焦點,是橢圓上一點,且.則的面積為()A.6 B.C.8 D.6.展開式中第3項的二項式系數(shù)為()A.6 B.C.24 D.7.已知集合,,若,則=()A.{1,2,3} B.{1,2,3,4}C.{0,1,2} D.{0,1,2,3}8.某老師希望調(diào)查全校學(xué)生平均每天的自習(xí)時間.該教師調(diào)查了60位學(xué)生,發(fā)現(xiàn)他們每天的平均自習(xí)時間是3.5小時.這里的總體是()A.楊高的全校學(xué)生;B.楊高的全校學(xué)生的平均每天自習(xí)時間;C.所調(diào)查的60名學(xué)生;D.所調(diào)查的60名學(xué)生的平均每天自習(xí)時間.9.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或10.在空間直角坐標(biāo)系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球11.設(shè)函數(shù),則和的值分別為()A.、 B.、C.、 D.、12.曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等差數(shù)列的前項和為,若,,則______14.直線的傾斜角的大小是_________.15.若方程表示的曲線是雙曲線,則實數(shù)m的取值范圍是___;該雙曲線的焦距是___16.已知橢圓和雙曲線有相同的焦點和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標(biāo)原點).若,則的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,底面是邊長為2的正方形,,F(xiàn),G分別是,的中點(1)求證:平面;(2)求平面與平面的夾角的大小18.(12分)已知動圓過定點,且與直線相切.(1)求動圓圓心的軌跡的方程;(2)直線過點與曲線相交于兩點,問:在軸上是否存在定點,使?若存在,求點坐標(biāo),若不存在,請說明理由.19.(12分)已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知點和平面內(nèi)一點,過點任作直線與橢圓相交于,兩點,設(shè)直線,,的斜率分別為,,,,試求,滿足的關(guān)系式.20.(12分)已知拋物線上一點到拋物線焦點的距離為,點關(guān)于坐標(biāo)原點對稱,過點作軸的垂線,為垂足,直線與拋物線交于兩點.(1)求拋物線的方程;(2)設(shè)直線與軸交點分別為,求的值;(3)若,求.21.(12分)已知橢圓C:經(jīng)過點,且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點,都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由22.(10分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由余弦定理計算求得角,根據(jù)三角形面積公式計算即可得出結(jié)果.【詳解】由余弦定理得,,∴,∴,故選:A2、D【解析】根據(jù)等差數(shù)列的性質(zhì),可知,從而可求出結(jié)果.【詳解】解:根據(jù)題意,可知等差數(shù)列中,,則,所以.故選:D.3、A【解析】依據(jù)定義法去求動圓的圓心的軌跡即可解決.【詳解】設(shè)動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A4、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.5、B【解析】利用橢圓的幾何性質(zhì),得到,,進而利用得出,進而可求出【詳解】解:由橢圓的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因為,,所以,所以,故選:B6、A【解析】根據(jù)二項展開式的通項公式,即可求解.【詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數(shù)為.故選:A.7、D【解析】根據(jù)題意,解不等式求出集合,由,得,進而求出,從而可求出集合,最后根據(jù)并集的運算即可得出答案.【詳解】解:由題可知,,而,即,解得:,又由于,得,因為,則,所以,解得:,所以,所以.故選:D.【點睛】本題考查集合的交集的定義和并集運算,屬于基礎(chǔ)題.8、B【解析】由總體的概念可得答案.【詳解】某老師希望調(diào)查全校學(xué)生平均每天的自習(xí)時間,該教師調(diào)查了60位學(xué)生,發(fā)現(xiàn)他們每天的平均自習(xí)時間是3.5小時,這里的總體是全校學(xué)生平均每天的自習(xí)時間.故選:B.9、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C10、D【解析】方程表示空間中的點到坐標(biāo)原點的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點到坐標(biāo)原點的距離為2,所以方程所表示的圖形是以原點為球心,2為半徑的球,故選:D11、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.12、C【解析】由曲線方程直接求離心率即可.【詳解】由題設(shè),,,∴離心率.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、77【解析】依題意利用等差中項求得,進而求得.【詳解】依題意可得,則,故故答案為:77.14、【解析】由題意,即,∴考點:直線的傾斜角.15、①.②.2【解析】由題意可得,由此可解得m的范圍,進一步將方程化為標(biāo)準(zhǔn)方程即可求得焦距【詳解】由所表示的曲線是雙曲線,可知,解得,當(dāng)時,方程可變?yōu)椋?,此時雙曲線焦距為,當(dāng)時,m不存在,不合題意;故雙曲線的焦距:故答案為:;16、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答,【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)取中點連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結(jié)果;(2)建立空間坐標(biāo)系,求面和面的法向量,即可得到兩個面的二面角的余弦值,進而得到二面角大小.【小問1詳解】如上圖,取中點連接,連接,均為線段中點,且,又G是的中點,且且四邊形為平行四邊形為等腰直角三角形,為斜邊中點,面,面面又面.【小問2詳解】建立如圖坐標(biāo)系,設(shè)面的法向量為設(shè)面的法向量為兩個法向量的夾角余弦值為:,由圖知兩個面的二面角為鈍角,故夾角為.18、(1);(2)存在,.【解析】(1)利用兩點間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點,滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達定理即可求出點的坐標(biāo)【小問1詳解】設(shè)動圓的圓心,依題意:化簡得:,即為動圓的圓心的軌跡的方程【小問2詳解】假設(shè)存在點,滿足條件,使①,顯然直線斜率不為0,所以由直線過點,可設(shè),由得設(shè),,,,則,由①式得,,即消去,,得,即,,,存在點使得19、(1);(2).【解析】(1)根據(jù)直線與圓相切可得,再結(jié)合離心率及間的關(guān)系可得的值,進而得到橢圓的方程;(2)分直線的斜率存在與不存在兩種情況考慮,分別求出點的坐標(biāo)后再求出的值,進而得到,最后根據(jù)斜率公式可得所求的關(guān)系式【詳解】(1)因為圓與直線相切,所以圓心到直線的距離,即所以,又由題意得所以,所以橢圓的標(biāo)準(zhǔn)方程為(2)①當(dāng)直線的斜率不存在時,可得直線方程為,由,解得或,不妨設(shè),,所以,又,所以,所以,整理得所以滿足的關(guān)系式為.②當(dāng)直線的斜率存在時,設(shè)直線,由消去并整理得,設(shè)點,則有,所以.所以,所以,整理得綜上可得滿足的關(guān)系式為【點睛】(1)判斷直線與橢圓的位置關(guān)系時,一般把二者方程聯(lián)立得到方程組,判斷方程組解的個數(shù),方程組有幾個解,直線與橢圓就有幾個公共點,方程組的解對應(yīng)公共點的坐標(biāo)(2)對于直線與橢圓位置關(guān)系的題目,注意設(shè)而不求和整體代入方法的運用.解題步驟為:①設(shè)直線與橢圓的交點為;②聯(lián)立直線與橢圓的方程,消元得到關(guān)于x或y的一元二次方程;③利用根與系數(shù)的關(guān)系設(shè)而不求;④利用題干中的條件轉(zhuǎn)化為,或,,進而求解.20、(1);(2);(3).【解析】(1)運用拋物線的定義進行求解即可;(2)設(shè)出直線的方程,與拋物線的方程聯(lián)立,可求得點和的縱坐標(biāo),結(jié)合直線點斜式方程、兩點間距離公式進行求解即可;(3)利用弦長公式求得,由兩點間距離公式求得和,再解方程即可.【小問1詳解】拋物線的準(zhǔn)線方程為:,因為點到拋物線焦點的距離為,所以有;小問2詳解】由題意知,,,設(shè),則,,,,所以直線的方程為,聯(lián)立,消去得,,解得,設(shè),,,,不妨取,,直線的斜率為,其方程為,令,則,同理可得,所以,而,所以;【小問3詳解】,其中,,,因為,所以,化簡得,解得(舍負),即,所以【點睛】關(guān)鍵點睛:運用拋物線的定義、弦長公式進行求解是解題的關(guān)鍵.21、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達出△AOB的面積,利用基本不等式求出的取值范圍,進而求出△AOB面積的取值范圍.【小問1詳解】因為橢圓C:的離心率,且過點所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時,設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因為,所以,即化簡得,且,O到直線l的距離所以,又,此時,所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因為當(dāng)k≠0時當(dāng)且僅當(dāng)即時取等號又因為,所以,所以當(dāng)k=0時,②斜率不存在時,直線與橢圓交于兩點或兩點易知存在圓的方程為⊙O:且綜上,所以【點睛】求解圓錐曲線相關(guān)的三角形或四邊形面積取值范圍問題,需要先設(shè)出變量,表達出面積,利用基本不等式或者配方,導(dǎo)函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.22、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 在線教育平臺課程設(shè)計方法
- 葫蘆絲興趣班教學(xué)總結(jié)報告
- 建筑工地安全施工管理手冊
- 消防知識宣傳及考核試題
- 餐飲行業(yè)下午茶服務(wù)流程規(guī)范
- 工程項目合同管理實務(wù)指導(dǎo)
- 電商平臺商品運營計劃及推廣方案
- 高考語文古詩詞鑒賞預(yù)測題分析
- 小學(xué)數(shù)學(xué)趣味游戲教學(xué)案例分析
- 英語音標(biāo)發(fā)音規(guī)律總結(jié)與教學(xué)技巧
- 2025年通信基礎(chǔ)知識題庫附答案
- 2026廣西融資擔(dān)保集團校園招聘10人歷年真題匯編帶答案解析
- 2025年gmp綜合知識培訓(xùn)試題及答案
- 2025年質(zhì)量手冊宣貫培訓(xùn)試卷及答案
- 2025秋蘇教版(2024)小學(xué)科學(xué)二年級第一學(xué)期期末質(zhì)量檢測卷附答案
- 黑龍江省哈爾濱市2025-2026學(xué)年九年級上學(xué)期期中語文試題(含答案及解析)
- 購物中心應(yīng)急預(yù)案流程圖
- 離婚協(xié)議(2026年版本)
- 安全員c證考試真題庫及答案
- 舟山事業(yè)編考試題及答案
- 2025年中小學(xué)生趣味百科知識競賽題庫及答案
評論
0/150
提交評論