山東省沂源縣二中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第1頁(yè)
山東省沂源縣二中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第2頁(yè)
山東省沂源縣二中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第3頁(yè)
山東省沂源縣二中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第4頁(yè)
山東省沂源縣二中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省沂源縣二中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了更好地研究雙曲線,某校高二年級(jí)的一位數(shù)學(xué)老師制作了一個(gè)如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)均關(guān)于該雙曲線的對(duì)稱(chēng)中心對(duì)稱(chēng),且,則()A. B.C. D.2.若雙曲線的漸近線方程為,則實(shí)數(shù)a的值為()A B.C.2 D.3.將上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到曲線C,若直線l與曲線C交于A,B兩點(diǎn),且AB中點(diǎn)坐標(biāo)為M(1,),那么直線l的方程為()A. B.C. D.4.已知橢圓:,左、右焦點(diǎn)分別為,過(guò)的直線交橢圓于兩點(diǎn),若的最大值為5,則的值是A.1 B.C. D.5.我們知道,償還銀行貸款時(shí),“等額本金還款法”是一種很常見(jiàn)的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬(wàn)元,張華跟銀行約定,按照等額本金還款法,每個(gè)月還一次款,20年還清,貸款月利率為,設(shè)張華第個(gè)月的還款金額為元,則()A.2192 B.C. D.6.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)7.已知雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C. D.8.已知橢圓的左,右兩個(gè)焦點(diǎn)分別為,若橢圓C上存在一點(diǎn)A,滿足,則橢圓C的離心率的取值范圍是()A. B.C. D.9.對(duì)于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),是的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱(chēng)點(diǎn)為函數(shù)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)圖象都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.設(shè)函數(shù),則()A. B.C. D.10.設(shè)函數(shù)的圖象在點(diǎn)處的切線為,則與坐標(biāo)軸圍成的三角形面積的最小值為()A. B.C. D.11.已知橢圓的短軸長(zhǎng)和焦距相等,則a的值為()A.1 B.C. D.12.已知向量,,且,則的值為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.直線被圓所截得的弦的長(zhǎng)為_(kāi)____14.已知圓,則圓心坐標(biāo)為_(kāi)_____.15.設(shè)函數(shù),,若存在,成立,則實(shí)數(shù)的取值范圍為_(kāi)_________.16.已知滿足約束條件,則的最小值為_(kāi)__________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓,離心率為,短半軸長(zhǎng)為1(1)求橢圓C的方程;(2)已知直線,問(wèn):在橢圓C上是否存在點(diǎn)T,使得點(diǎn)T到直線l的距離最大?若存在,請(qǐng)求出這個(gè)最大距離;若不存在,請(qǐng)說(shuō)明理由18.(12分)已知圓C:,圓C與x軸交于A,B兩點(diǎn)(1)求直線y=x被圓C所截得的弦長(zhǎng);(2)圓M過(guò)點(diǎn)A,B,且圓心在直線y=x+1上,求圓M的方程19.(12分)已知拋物線上一點(diǎn)到焦點(diǎn)的距離與到軸的距離相等.(1)求拋物線的方程;(2)若直線與拋物線交于A,兩點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),證明:直線與軸的交點(diǎn)為定點(diǎn).20.(12分)如圖,在四棱錐中,底面是正方形,側(cè)面底面,為側(cè)棱上一點(diǎn)(1)求證:;(2)若為中點(diǎn),平面與側(cè)棱于點(diǎn),且,求四棱錐的體積21.(12分)已知冪函數(shù)在上單調(diào)遞減,函數(shù)的定義域?yàn)榧螦(1)求m的值;(2)當(dāng)時(shí),的值域?yàn)榧螧,若是成立的充分不必要條件,求實(shí)數(shù)的取值范圍22.(10分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點(diǎn)在線段(不含端點(diǎn))上運(yùn)動(dòng),設(shè)直線與平面所成角為,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】依題意以雙曲線的對(duì)稱(chēng)中心為坐標(biāo)原點(diǎn)建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點(diǎn)縱坐標(biāo)代入計(jì)算即可求得橫坐標(biāo)得出結(jié)果.【詳解】以雙曲線的對(duì)稱(chēng)中心為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,因?yàn)殡p曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因?yàn)椋缘目v坐標(biāo)為18.由,得,故.故選:D.2、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D3、A【解析】先根據(jù)題意求出曲線C的方程,然后利用點(diǎn)差法求出直線l的斜率,從而可求出直線方程【詳解】設(shè)點(diǎn)為曲線C上任一點(diǎn),其在上對(duì)應(yīng)在的點(diǎn)為,則,得,所以,所以曲線C的方程為,設(shè),則,兩方程相減整理得,因?yàn)锳B中點(diǎn)坐標(biāo)為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A4、D【解析】由題意可知橢圓是焦點(diǎn)在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過(guò)橢圓焦點(diǎn)的弦中通徑的長(zhǎng)最短,可知當(dāng)AB垂直于x軸時(shí)|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點(diǎn)在x軸上,∵過(guò)F1的直線l交橢圓于A,B兩點(diǎn),則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時(shí)|AB|最小,|BF2|+|AF2|值最大,此時(shí)|AB|=b2,則5=8﹣b2,解得b,故選D【點(diǎn)睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計(jì)算能力,屬于中檔題5、D【解析】計(jì)算出每月應(yīng)還的本金數(shù),再計(jì)算第n個(gè)月已還多少本金,由此可計(jì)算出個(gè)月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個(gè)月的還款金額為元,則,故選:D6、C【解析】根據(jù)莖葉圖依次計(jì)算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.7、B【解析】由雙曲線的漸近線方程以及即可求得離心率.【詳解】由已知條件得,∴,∴,∴,∴,故選:.8、C【解析】根據(jù)題意可知當(dāng)A為橢圓的上下頂點(diǎn)時(shí),即可滿足橢圓C上存在一點(diǎn)A,使得,由此可得,解此不等式可得答案.【詳解】由橢圓的對(duì)稱(chēng)性可知,當(dāng)A為橢圓的上下頂點(diǎn)時(shí),最大,故只需即可滿足題意,設(shè)O為坐標(biāo)原點(diǎn),則只需,即有,所以,解得,故選:C9、B【解析】根據(jù)“拐點(diǎn)”的概念可判斷函數(shù)的對(duì)稱(chēng)中心,進(jìn)而求解.【詳解】,,,令,解得:,而,故函數(shù)關(guān)于點(diǎn)對(duì)稱(chēng),,,故選:B.10、C【解析】利用導(dǎo)數(shù)的幾何意義求得切線為,求x、y軸上截距,進(jìn)而可得與坐標(biāo)軸圍成的三角形面積,利用導(dǎo)數(shù)研究在上的最值即可得結(jié)果.【詳解】由題設(shè),,則,又,所以切線為,當(dāng)時(shí),當(dāng)時(shí),又,所以與坐標(biāo)軸圍成的三角形面積為,則,當(dāng)時(shí),當(dāng)時(shí),所以在上遞減,在上遞增,即.故選:C11、A【解析】由題設(shè)及橢圓方程可得,即可求參數(shù)a的值.【詳解】由題設(shè)易知:橢圓參數(shù),即有,可得故選:A12、C【解析】根據(jù)空間向量平行的性質(zhì)得,代入數(shù)值解方程組即可.【詳解】因?yàn)椋?,所以,所以,解得?故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長(zhǎng)為考點(diǎn):1.圓的方程;2.直線被圓截得的弦長(zhǎng)的求法;14、【解析】將圓的一般方程配方程標(biāo)準(zhǔn)方程即可.【詳解】圓,即,它的圓心坐標(biāo)是.故答案為:.15、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當(dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:16、【解析】根據(jù)題意,作出可行域,進(jìn)而根據(jù)幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據(jù)幾何意義,當(dāng)直線過(guò)點(diǎn)時(shí),有最小值,所以聯(lián)立方程得,所以的最小值為故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)存在,最大距離為.,理由見(jiàn)解析【解析】(1)根據(jù)離心率及短軸長(zhǎng)求橢圓參數(shù),即可得橢圓方程.(2)根據(jù)直線與橢圓的位置關(guān)系,將問(wèn)題轉(zhuǎn)為平行于直線且與橢圓相切的切線與直線最大距離,設(shè)直線方程聯(lián)立橢圓方程根據(jù)求參數(shù),進(jìn)而判斷點(diǎn)T的存在性,即可求最大距離.【小問(wèn)1詳解】由題設(shè)知:且,又,∴,故橢圓C的方程為.小問(wèn)2詳解】聯(lián)立直線與橢圓,可得:,∴,即直線與橢圓相離,∴只需求平行于直線且與橢圓相切的切線與直線最大距離即為所求,令平行于直線且與橢圓相切的直線為,聯(lián)立橢圓,整理可得:,∴,可得,當(dāng),切線為,其與直線距離為;當(dāng),切線為,其與直線距離為;綜上,時(shí),與橢圓切點(diǎn)與直線距離最大為.18、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點(diǎn)到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達(dá)定理,求出圓心的橫坐標(biāo),即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問(wèn)1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長(zhǎng)為=【小問(wèn)2詳解】設(shè)A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點(diǎn),∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標(biāo)為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為19、(1);(2)證明見(jiàn)解析.【解析】(1)利用拋物線點(diǎn),n)到焦點(diǎn)的距離等于到x軸的距離求出,從而得到拋物線的標(biāo)準(zhǔn)方程(2)聯(lián)立直線與拋物線方程,通過(guò)韋達(dá)定理求出直線方程,然后由,即可求解【小問(wèn)1詳解】由題意可得,故拋物線方程為;【小問(wèn)2詳解】設(shè),,,,直線的方程為,聯(lián)立方程中,消去得,,則,又,解得或(舍去),直線方程為,直線過(guò)定點(diǎn)20、(1)證明見(jiàn)解析(2)【解析】(1)利用面面垂直的性質(zhì)定理可得出平面,再利用線面垂直的性質(zhì)可得出;(2)分析可知為的中點(diǎn),平面,計(jì)算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問(wèn)1詳解】證明:因?yàn)樗倪呅螢檎叫?,則,因?yàn)閭?cè)面底面,平面平面,平面,所以平面,又平面,所以.【小問(wèn)2詳解】解:因?yàn)?,平面,平面,所以,平面,因?yàn)槠矫?,平面平面,所以,所以,,則,所以,四邊形是直角梯形,又是中點(diǎn),所以,,所以,由平面,平面,所以,從而,正三角形中,是中點(diǎn),,即,,所以平面,因?yàn)椋?21、(1)(2)【解析】(1)根據(jù)冪函數(shù)的定義和單調(diào)性求解;(2)利用根式函數(shù)的定義域和值域求得集合A,B,再由是A的真子集求解.【小問(wèn)1詳解】解:因?yàn)閮绾瘮?shù)在上單調(diào)遞減,所以,解得.【小問(wèn)2詳解】由,得,解得,所以,當(dāng)時(shí)的值域?yàn)椋裕驗(yàn)槭浅闪⒌某浞植槐匾獥l件,所以是A的真子集,,解得.22、(1)證明見(jiàn)解析(2)【解析】(1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論