版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建省福州市八縣一中聯(lián)考2026屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)幾何體的三視圖都是半徑為1的圓,在該幾何體內(nèi)放置一個(gè)高度為1的長方體,則長方體的體積最大值為()A. B.C. D.12.《萊茵德紙草書》(RhindPapyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有這樣一道題目:把93個(gè)面包分給5個(gè)人,使每個(gè)人所得面包個(gè)數(shù)成等比數(shù)列,且使較小的兩份之和等于中間一份的四分之三,則最大的一份是()個(gè)A.12 B.24C.36 D.483.已知雙曲線的左、右焦點(diǎn)分別為,過點(diǎn)的直線與圓相切于點(diǎn),交雙曲線的右支于點(diǎn),且點(diǎn)是線段的中點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.4.的二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)是第()項(xiàng).A.6 B.5C.4和6 D.5和75.用這3個(gè)數(shù)組成沒有重復(fù)數(shù)字的三位數(shù),則事件“這個(gè)三位數(shù)是偶數(shù)”與事件“這個(gè)三位數(shù)大于342”()A.是互斥但不對立事件 B.不是互斥事件C.是對立事件 D.是不可能事件6.瑞士數(shù)學(xué)家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn),其歐拉線方程為,則頂點(diǎn)C的坐標(biāo)是()A.() B.()C.() D.()7.設(shè)平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.8.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出S的結(jié)果是()A.128 B.64C.16 D.329.我們知道,償還銀行貸款時(shí),“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個(gè)月還一次款,20年還清,貸款月利率為,設(shè)張華第個(gè)月的還款金額為元,則()A.2192 B.C. D.10.已知命題:,,命題:,,則()A.是假命題 B.是真命題C.是真命題 D.是假命題11.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)中相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)12.有甲、乙兩個(gè)抽獎(jiǎng)箱,甲箱中有3張無獎(jiǎng)票3張有獎(jiǎng)票,乙箱中有4張無獎(jiǎng)票2張有獎(jiǎng)票,某人先從甲箱中抽出一張放進(jìn)乙箱,再從乙箱中任意抽出一張,則最后抽到有獎(jiǎng)票的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)雙曲線C:(a>0,b>0)的一條漸近線為y=x,則C的離心率為_________14.已知等差數(shù)列的通項(xiàng)公式為,那么它的前項(xiàng)和___________.15.若實(shí)數(shù)x,y滿足約束條件,則的最大值是_________.16.甲、乙兩名學(xué)生通過某次聽力測試的概率分別為和,且是否通過聽力測試相互獨(dú)立,兩人同時(shí)參加測試,其中有且只有一人能通過的概率是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)求焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程;(2)求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程;18.(12分)已知,是橢圓:的左、右焦點(diǎn),離心率為,點(diǎn)A在橢圓C上,且的周長為.(1)求橢圓C的方程;(2)若B為橢圓C上頂點(diǎn),過的直線與橢圓C交于兩個(gè)不同點(diǎn)P、Q,直線BP與x軸交于點(diǎn)M,直線BQ與x軸交于點(diǎn)N,判斷是否為定值.若是,求出定值,若不是,請說明理由.19.(12分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設(shè),已知過曲線的右焦點(diǎn),傾斜角為的直線交曲線于A,B兩點(diǎn),求.20.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(diǎn)(1)求橢圓C方程;(2)已知直線與橢圓C交于不同的兩點(diǎn)M,N,與直線交于點(diǎn)Q(P,Q,M,N均不重合),記的斜率分別為,若①求△面積的范圍,②證明:為定值21.(12分)已知數(shù)列滿足,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.22.(10分)如圖,直四棱柱中,底面是邊長為的正方形,點(diǎn)在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個(gè)條件中選擇兩個(gè)作已知,使得平面,并給出證明.條件①:為的中點(diǎn);條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意得到幾何體為半徑為1的球,長方體的體對角線為球的直徑時(shí),長方體體積最大,設(shè)出長方體的長和寬,得到等量關(guān)系,利用基本不等式求解體積最大值.【詳解】由題意得:此幾何體為半徑為1的球,長方體為球的內(nèi)接長方體時(shí),體積最大,此時(shí)長方體的體對角線為球的直徑,設(shè)長方體長為,寬為,則由題意得:,解得:,而長方體體積為,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故選:B2、D【解析】設(shè)等比數(shù)列的首項(xiàng)為,公比,根據(jù)題意,由求解.【詳解】設(shè)等比數(shù)列的首項(xiàng)為,公比,由題意得:,即,解得,所以,故選:D3、D【解析】焦點(diǎn)三角形問題,可結(jié)合為三角形的中位線,判斷:焦點(diǎn)三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點(diǎn)睛】雙曲線上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形,稱為雙曲線的焦點(diǎn)三角形,與焦點(diǎn)三角形有關(guān)的計(jì)算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系4、A【解析】由二項(xiàng)展開的中間項(xiàng)或中間兩項(xiàng)二項(xiàng)式系數(shù)最大可得解.【詳解】因?yàn)槎?xiàng)式展開式一共11項(xiàng),其中中間項(xiàng)的二項(xiàng)式系數(shù)最大,易知當(dāng)r=5時(shí),最大,即二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的為第6項(xiàng).故選:A5、B【解析】根據(jù)題意列舉出所有可能性,進(jìn)而根據(jù)各類事件的定義求得答案.【詳解】由題意,將2,3,4組成一個(gè)沒有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以兩個(gè)事件不是互斥事件,也不是對立事件.故選:B.6、A【解析】根據(jù)題意,求得的外心,再根據(jù)外心的性質(zhì),以及重心的坐標(biāo),聯(lián)立方程組,即可求得結(jié)果.【詳解】因?yàn)?,故的斜率,又的中點(diǎn)坐標(biāo)為,故的垂直平分線的方程為,即,故△的外心坐標(biāo)即為與的交點(diǎn),即,不妨設(shè)點(diǎn),則,即;又△的重心的坐標(biāo)為,其滿足,即,也即,將其代入,可得,,解得或,對應(yīng)或,即或,因?yàn)榕c點(diǎn)重合,故舍去.故點(diǎn)的坐標(biāo)為.故選:A.7、D【解析】由向量的數(shù)量積公式結(jié)合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因?yàn)樗械幕臼录灿蟹N,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D8、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C9、D【解析】計(jì)算出每月應(yīng)還的本金數(shù),再計(jì)算第n個(gè)月已還多少本金,由此可計(jì)算出個(gè)月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個(gè)月的還款金額為元,則,故選:D10、C【解析】先分別判斷命題、的真假,再利用邏輯聯(lián)結(jié)詞“或”與“且”判斷命題的真假.【詳解】由題意,,所以,成立,即命題為真命題,,所以不存在,使得,即命題為假命題,所以是假命題,為真命題,所以是真命題,是假命題,是假命題,是真命題.故選:C11、C【解析】根據(jù)莖葉圖中數(shù)據(jù)的波動(dòng)情況,可直接判斷方差不同;根據(jù)莖葉圖中的數(shù)據(jù),分別計(jì)算極差、中位數(shù)、平均數(shù),即可得出結(jié)果.【詳解】由莖葉圖可得:甲的數(shù)據(jù)更集中,乙的數(shù)據(jù)較分散,所以甲與乙的方差不同;甲的極差為;乙的極差為,所以甲與乙的極差不同;甲的中位數(shù)為,乙的中位數(shù)為,所以中位數(shù)不同;甲的平均數(shù)為,乙的平均數(shù)為,所以甲、乙的平均數(shù)相同;故選:C.12、B【解析】先分為在甲箱中抽出一張有獎(jiǎng)票放入乙箱和在甲箱中抽出一張無獎(jiǎng)票放入乙箱,進(jìn)而結(jié)合條件概率求概率的方法求得答案.【詳解】記表示在甲箱中抽出一張有獎(jiǎng)票放進(jìn)乙箱,表示在甲箱中抽出一張無獎(jiǎng)票放進(jìn)乙箱,A表示最后抽到有獎(jiǎng)票.所以,,于是.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知可得,結(jié)合雙曲線中的關(guān)系,即可求解.【詳解】由雙曲線方程可得其焦點(diǎn)在軸上,因?yàn)槠湟粭l漸近線為,所以,.故答案為:【點(diǎn)睛】本題考查的是有關(guān)雙曲線性質(zhì),利用漸近線方程與離心率關(guān)系是解題的關(guān)鍵,要注意判斷焦點(diǎn)所在位置,屬于基礎(chǔ)題.14、【解析】由題意知等差數(shù)列的通項(xiàng)公式,即可求出首項(xiàng),再利用等差數(shù)列求和公式即可得到答案.【詳解】已知等差數(shù)列的通項(xiàng)公式為,..故答案為:.15、##【解析】畫出可行域,通過平移基準(zhǔn)直線到可行域邊界位置,由此求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,平移基準(zhǔn)直線到點(diǎn)時(shí),取得最大值為.故答案為:16、##0.5【解析】分兩種情況,結(jié)合相互獨(dú)立事件公式即可求解.【詳解】記甲,乙通過聽力測試的分別為事件,則可得,兩人有且僅有一人通過為事件,故所求事件概率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)由虛軸長是12求出半虛軸b,根據(jù)雙曲線的性質(zhì)c2=a2+b2以及離心率,求出a2,寫出雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)出拋物線方程,利用經(jīng)過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點(diǎn)在x軸上,設(shè)所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點(diǎn)在x軸上的雙曲線的方程為(2)由于點(diǎn)P在第三象限,所以拋物線方程可設(shè)為:或(p>0)當(dāng)方程為,將點(diǎn)代入得16=4p,即p=4,拋物線方程為:;當(dāng)方程為,將點(diǎn)代入得4=8p,即p=,拋物線方程為:;18、(1)(2)【解析】(1)利用橢圓的定義可得,而離心率,解方程組,即可得解;(2)設(shè)直線的方程為,將其與橢圓的方程聯(lián)立,由,,三點(diǎn)的坐標(biāo)寫出直線,的方程,進(jìn)而知點(diǎn),的坐標(biāo),再結(jié)合韋達(dá)定理,進(jìn)行化簡,即可得解【小問1詳解】解:因?yàn)榈闹荛L為,所以,即,又離心率,所以,,所以,故橢圓的方程為【小問2詳解】解:由題意知,直線的斜率一定不可能為0,設(shè)其方程為,,,,,聯(lián)立,得,所以,,因?yàn)辄c(diǎn)為,所以直線的方程為,所以點(diǎn),,直線的方程為,所以點(diǎn),,所以,即為定值19、(1)(2)【解析】(1)利用雙曲線的標(biāo)準(zhǔn)方程直接列不等式組,即可求解;(2)先求出直線l的方程為:,利用“設(shè)而不求法”和弦長公式求弦長.【小問1詳解】要使曲線:為雙曲線,只需,解得:,即的取值范圍.【小問2詳解】當(dāng)m=0時(shí),曲線C的方程為,可得,所以右焦點(diǎn),由題意可得直線l的方程為:.設(shè),聯(lián)立整理可得:,可得:所以弦長,所以20、(1);(2)①;②證明見解析.【解析】(1)根據(jù)橢圓離心率和橢圓經(jīng)過的點(diǎn)建立方程組,求解方程組可得橢圓的方程;(2)先根據(jù)相切求出直線的斜率,結(jié)合可得,進(jìn)而應(yīng)用弦長公式、點(diǎn)線距離公式及三角形面積公式求△面積的范圍,再逐個(gè)求解,,然后可證結(jié)論.【小問1詳解】由題意,解得,故橢圓C的方程為.【小問2詳解】設(shè)直線為,聯(lián)立得:,因?yàn)橹本€與橢圓C相切,則判別式,即,整理得,∴,故直線為,又,可得,設(shè)直線為,聯(lián)立方程組,解得,故Q為,聯(lián)立方程組,化簡得設(shè),由得:,且,①,到直線的距離為,∴,令,∴.②由上,故,于是為定值.【點(diǎn)睛】直線與橢圓的相切問題一般是聯(lián)立方程,結(jié)合判別式為零求解;定值問題的求解一般結(jié)合目標(biāo)式中的項(xiàng),逐個(gè)求解,代入驗(yàn)證即可.21、(1)證明見解析,;(2).【解析】(1)由已知條件,可得為常數(shù),從而得證數(shù)列是等比數(shù)列,進(jìn)而可得數(shù)列的通項(xiàng)公式;(2)由(1)可得,又,所以,所以,利用錯(cuò)位相減法即可求解數(shù)列的前項(xiàng)和.【小問1詳解】證明:由題意,因?yàn)?,,,所以,,所以?shù)列是以2為首項(xiàng),3為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.22、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結(jié),,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結(jié)論.(2)選條件①③,設(shè),連結(jié),,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結(jié)論;選條件②③,設(shè),連結(jié),由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結(jié)論;(3)構(gòu)建空間直角坐標(biāo)系,求平面、平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求平面與平面夾角的余弦值.【小問1詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年生物制品批簽發(fā)管理測試題及答案
- 北京警察學(xué)院《環(huán)境工程原理》2024 - 2025 學(xué)年第一學(xué)期期末試卷
- 機(jī)械士兵介紹
- 《斑紋》說課課件高中語文蘇教版必修五科學(xué)之光
- 五一勞動(dòng)安全教育課件
- 2025年電力設(shè)施運(yùn)行維護(hù)與故障處理手冊
- 2026年劇本殺運(yùn)營公司商標(biāo)注冊與維護(hù)管理制度
- 機(jī)場細(xì)則培訓(xùn)
- 2026年新能源行業(yè)技術(shù)突破與市場前景創(chuàng)新報(bào)告
- 心肺復(fù)蘇指南更新要點(diǎn)專家講座
- 人工智能在射頻電路中的應(yīng)用-洞察及研究
- (正式版)DB65∕T 3997-2017 《油氣田鉆井固體廢物綜合利用污染控制要求》
- 2024-2025學(xué)年四川省廣元市蒼溪縣九年級(jí)(上)期末數(shù)學(xué)試卷(含答案)
- T-CBDA 82-2024 家裝防水防潮與滲漏修繕技術(shù)規(guī)程
- 基于灰色模型下的經(jīng)濟(jì)發(fā)展生育意愿分析與預(yù)測
- 腸道屏障修復(fù)研究-洞察及研究
- 審計(jì)數(shù)據(jù)管理辦法
- 2025國開《中國古代文學(xué)(下)》形考任務(wù)1234答案
- 研發(fā)公司安全管理制度
- 兒童口腔診療行為管理學(xué)
- 瓷磚樣品發(fā)放管理制度
評(píng)論
0/150
提交評(píng)論