2026屆陜西省榆林市橫山縣第四中學高一上數(shù)學期末調研模擬試題含解析_第1頁
2026屆陜西省榆林市橫山縣第四中學高一上數(shù)學期末調研模擬試題含解析_第2頁
2026屆陜西省榆林市橫山縣第四中學高一上數(shù)學期末調研模擬試題含解析_第3頁
2026屆陜西省榆林市橫山縣第四中學高一上數(shù)學期末調研模擬試題含解析_第4頁
2026屆陜西省榆林市橫山縣第四中學高一上數(shù)學期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆陜西省榆林市橫山縣第四中學高一上數(shù)學期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,則銳角等于A.30° B.45°C.60° D.75°2.若,求()A. B.C. D.3.已知向量,則ABC=A30 B.45C.60 D.1204.已知函數(shù),且,則A. B.0C. D.35.已知函數(shù),則下列結論正確的是()A.B.的值域為C.在上單調遞減D.的圖象關于點對稱6.已知函數(shù),若對一切,都成立,則實數(shù)a的取值范圍為()A. B.C. D.7.若直線與圓相切,則的值是()A.-2或12 B.2或-12C.-2或-12 D.2或128.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.16 B.15C.18 D.179.土地沙漠化的治理,對中國乃至世界來說都是一個難題,我國創(chuàng)造了治沙成功案例——毛烏素沙漠.某沙漠經過一段時間的治理,已有1000公頃植被,假設每年植被面積以20%的增長率呈指數(shù)增長,按這種規(guī)律發(fā)展下去,則植被面積達到4000公頃至少需要經過的年數(shù)為()(參考數(shù)據(jù):?。〢.6 B.7C.8 D.910.已知,,,則a,b,c的大小關系為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與直線的傾斜角分別為和,則直線與的交點坐標為__________12.函數(shù)的最大值是__________13.下面有5個命題:①函數(shù)的最小正周期是②終邊在軸上的角的集合是③在同一坐標系中,函數(shù)的圖象和函數(shù)的圖象有3個公共點④把函數(shù)的圖象向右平移得到的圖象⑤函數(shù)在上是減函數(shù)其中,真命題的編號是___________(寫出所有真命題的編號)14.某公司在甲、乙兩地銷售同一種品牌的汽車,利潤(單位:萬元)分別為和,其中為銷售量(單位:輛).若該公司在兩地共銷售15輛汽車,則該公司能獲得的最大利潤為_____萬元.15.將函數(shù)的圖象先向下平移1個單位長度,在作關于直線對稱的圖象,得到函數(shù),則__________.16.已知A,B,C為的內角.(1)若,求的取值范圍;(2)求證:;(3)設,且,,,求證:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設在區(qū)間單調,且都有(1)求的解析式;(2)用“五點法”作出在的簡圖,并寫出函數(shù)在的所有零點之和.18.已知直線l過點和直線:平行,圓O的方程為,直線l與圓O交于B,C兩點.(1)求直線l的方程;(2)求直線l被圓O所截得的弦長.19.如圖,平面,,,,分別為的中點.(I)證明:平面;(II)求與平面所成角的正弦值.20.已知函數(shù)求的最小正周期及其單調遞增區(qū)間;若,求的值域21.已知A,B,C為的內角.(1)若,求的取值范圍;(2)求證:;(3)設,且,,,求證:

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】因為向量共線,則有,得,銳角等于45°,選B2、A【解析】根據(jù),求得,再利用指數(shù)冪及對數(shù)的運算即可得出答案.【詳解】解:因為,所以,所以.故選:A.3、A【解析】由題意,得,所以,故選A【考點】向量的夾角公式【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質知,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關的問題4、D【解析】分別求和,聯(lián)立方程組,進行求解,即可得到答案.【詳解】由題意,函數(shù),且,,則,兩式相加得且,即,,則,故選D【點睛】本題主要考查了函數(shù)值的計算,結合函數(shù)奇偶性的性質建立方程組是解決本題的關鍵,著重考查了運算與求解能力,屬于基礎題.5、C【解析】利用分段函數(shù)化簡函數(shù)解析式,再利用函數(shù)圖像和性質,從而得出結論.【詳解】故函數(shù)的周期為,即,故排除A,顯然函數(shù)的值域為,故排除B,在上,函數(shù)為單調遞減,故C正確,根據(jù)函數(shù)的圖像特征,可知圖像不關于點對稱,故排除D.故選:C.【點睛】本題解題時主要利用分段函數(shù)化簡函數(shù)的解析式,在化簡的過程中注意函數(shù)的定義域,以及充分利用函數(shù)的圖像和性質解題.6、C【解析】將,成立,轉化為,對一切成立,由求解即可.【詳解】解:因為函數(shù),若對一切,都成立,所以,對一切成立,令,所以,故選:C【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉化為:(或),則(1)恒成立:;;(2)能成立:;.7、C【解析】解方程即得解.【詳解】解:由題得圓的圓心坐標為半徑為1,所以或.故選:C8、B【解析】由三視圖還原的幾何體如圖所示,結合長方體的體積公式計算即可.【詳解】由圖可知,該幾何體是在一個長方體的右上角挖去一個小長方體,如圖,故該幾何體的體積為故選:B9、C【解析】根據(jù)題意列出不等式,利用對數(shù)換底公式,計算出結果.【詳解】經過年后,植被面積為公頃,由,得.因為,所以,又因為,故植被面積達到4000公頃至少需要經過的年數(shù)為8.故選:C10、D【解析】與中間值1和2比較.【詳解】,,,所以故選:D.【點睛】本題考查冪與對數(shù)的大小比較,在比較對數(shù)和冪的大小時,能化為同底數(shù)的化為同底數(shù),再利用函數(shù)的單調性比較,否則可借助中間值比較,如0,1,2等等.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因為直線與直線的傾斜角分別為和,所以,聯(lián)立與可得,,直線與的交點坐標為,故答案為.12、【解析】由題意得,令,則,且故,,所以當時,函數(shù)取得最大值,且,即函數(shù)的最大值為答案:點睛:(1)對于sinα+cosα,sinαcosα,sinα-cosα這三個式子,當其中一個式子的值知道時,其余二式的值可求,轉化的公式為(sinα±cosα)2=1±2sinαcosα(2)求形如y=asinxcosx+b(sinx±cosx)+c的函數(shù)的最值(或值域)時,可先設t=sinx±cosx,轉化為關于t的二次函數(shù)求最值(或值域)13、①④【解析】①,正確;②錯誤;③,和在第一象限無交點,錯誤;④正確;⑤錯誤.故選①④14、【解析】設該公司在甲地銷x輛,那么乙地銷15-x輛,利潤L(x)=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30.由L′(x)=-0.3x+3.06=0,得x=10.2.且當x<10.2時,L′(x)>0,x>10.2時,L′(x)<0,∴x=10時,L(x)取到最大值,這時最大利潤為45.6萬元答案:45.6萬元15、5【解析】利用平移變換和反函數(shù)的定義得到的解析式,進而得解.【詳解】函數(shù)的圖象先向下平移1個單位長度得到作關于直線對稱的圖象,即的反函數(shù),則,,即,故答案為:5【點睛】關鍵點點睛:本題考查圖像的平移變換和反函數(shù)的應用,利用反函數(shù)的性質求出的解析式是解題的關鍵,屬于基礎題.16、(1)(2)證明見解析(3)證明見解析【解析】(1)根據(jù)兩角和的正切公式及均值不等式求解;(2)先證明,再由不等式證明即可;(3)找出不等式的等價條件,換元后再根據(jù)函數(shù)的單調性構造不等式,利用不等式性質即可得證.【小問1詳解】,為銳角,,,解得,當且僅當時,等號成立,即.【小問2詳解】在中,,,,.【小問3詳解】由(2)知,令,原不等式等價為,在上為增函數(shù),,,同理可得,,,,故不等式成立,問題得證.【點睛】本題第3問的證明需要用到,換元后轉換為,再構造不等式是證明的關鍵,本題的難點就在利用函數(shù)單調性構造出不等式.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)圖象見解析,所有零點之和為【解析】(1)依題意在時取最大值,在時取最小值,再根據(jù)函數(shù)在單調,即可得到,即可求出,再根據(jù)函數(shù)在取得最大值求出,即可求出函數(shù)解析式;(2)列出表格畫出函數(shù)圖象,再根據(jù)函數(shù)的對稱性求出零點和;【小問1詳解】解:依題意在時取最大值,在時取最小值,又函數(shù)在區(qū)間單調,所以,即,又,所以,由得,即,又因為,所以,,所以.【小問2詳解】解:列表如下0001所以函數(shù)圖象如下所示:由圖知的一條對稱軸為有兩個實數(shù)根,記為,則由對稱性知,所以所有實根之和為.18、(1)(2)【解析】(1)通過直線l和直線:平行,得到斜率,再由直線l過點,用點斜式寫出方程.(2)先求出圓心O到直線l的距離,再根據(jù)弦長公式求解.【詳解】(1),,又因為直線l過點∴直線l的方程為:,即(2)因為圓心O到直線l的距離為,所以【點睛】本題主要考查了直線方程的求法和直線與圓的位置關系中的弦長問題,還考查了運算求解的能力,屬于中檔題.19、(Ⅰ)略(Ⅱ)【解析】(I)證明:連接,在中,分別是的中點,所以,又,所以,又平面ACD,DC平面ACD,所以平面ACD(Ⅱ)在中,,所以而DC平面ABC,,所以平面ABC而平面ABE,所以平面ABE平面ABC,所以平面ABE由(Ⅰ)知四邊形DCQP是平行四邊形,所以所以平面ABE,所以直線AD在平面ABE內的射影是AP,所以直線AD與平面ABE所成角是在中,,所以考點:線面平行的判定定理;線面角點評:本題主要考查了空間中直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做.而對于利用向量法求線面角關鍵是正確寫出點的坐標和求解平面的一個法向量.注意計算要仔細、認真20、(1),,;(2)【解析】由三角函數(shù)的周期公式求周期,再利用正弦型函數(shù)的單調性,即可求得函數(shù)的單調區(qū)間;由x的范圍求得相位的范圍,進而得到,即可求解函數(shù)的值域【詳解】(1)由題意,知,所以的最小正周期又由,得,所以的單調遞增區(qū)間為,;(2)因為,所以,則,所以,所以,即所以的值域為【點睛】本題主要考查了三角函數(shù)的圖象與性質的應用,其中解答中熟記型函數(shù)的圖象和性質,準確計算是解答的此類問題的關鍵,著重考查了推理與運算能力,屬于基礎題.21、(1)(2)證明見解析(3)證明見解析【解析】(1)根據(jù)兩角和的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論