河南省鄭州市外國語學校2026屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
河南省鄭州市外國語學校2026屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
河南省鄭州市外國語學校2026屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
河南省鄭州市外國語學校2026屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
河南省鄭州市外國語學校2026屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

河南省鄭州市外國語學校2026屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,若,,共面,則λ等于()A. B.3C. D.92.橢圓的左右兩焦點分別為,,過垂直于x軸的直線交C于A,B兩點,,則橢圓C的離心率是()A. B.C. D.3.設等差數(shù)列,的前n項和分別是,,若,則()A. B.C. D.4.已知不等式解集為,下列結(jié)論正確的是()A. B.C. D.5.已知分別是橢圓的左,右焦點,點M是橢圓C上的一點,且的面積為1,則橢圓C的短軸長為()A.1 B.2C. D.46.某地為響應總書記關于生態(tài)文明建設的號召,大力開展“青山綠水”工程,造福于民,擬對該地某湖泊進行治理,在治理前,需測量該湖泊的相關數(shù)據(jù).如圖所示,測得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數(shù)據(jù))()A.60米 B.120米C.150米 D.300米7.函數(shù)在定義域上是增函數(shù),則實數(shù)m的取值范圍為()A. B.C. D.8.傳說古希臘畢達哥拉斯學派的數(shù)學家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項為()A. B.C. D.9.已知函數(shù),其中e是自然數(shù)對數(shù)的底數(shù),若,則實數(shù)a的取值范圍是A. B.C. D.10.設實數(shù)x,y滿足,則目標函數(shù)的最大值是()A. B.C.16 D.3211.在等比數(shù)列中,若,,則()A. B.C. D.12.已知數(shù)列是等差數(shù)列,為數(shù)列的前項和,,,則()A.54 B.71C.81 D.80二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在點處的切線為直線l,則l與坐標軸圍成的三角形面積為___________.14.已知O為坐標原點,拋物線C:的焦點為F,P為C上一點,PF與x軸垂直,Q為x軸上一點,且,若,則______.15.已知拋物線的焦點到準線的距離為,則拋物線的標準方程為___________.(寫出一個即可)16.直線與曲線有且僅有一個公共點.則b的取值范圍是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點18.(12分)已知某學校的初中、高中年級的在校學生人數(shù)之比為9:11,該校為了解學生的課下做作業(yè)時間,用分層抽樣的方法在初中、高中年級的在校學生中共抽取了100名學生,調(diào)查了他們課下做作業(yè)的時間,并根據(jù)調(diào)查結(jié)果繪制了如下頻率分布直方圖:(1)在抽取的100名學生中,初中、高中年級各抽取的人數(shù)是多少?(2)根據(jù)頻率分布直方圖,估計學生做作業(yè)時間的中位數(shù)和平均時長(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(3)另據(jù)調(diào)查,這100人中做作業(yè)時間超過4小時的人中2人來自初中年級,3人來自高中年級,從中任選2人,恰好1人來自初中年級,1人來自高中年級的概率是多少19.(12分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.20.(12分)已知數(shù)列中,數(shù)列的前n項和為滿足.(1)證明:數(shù)列為等比數(shù)列;(2)在和中插入k個數(shù)構(gòu)成一個新數(shù)列:,2,,4,6,,8,10,12,,…,其中插入的所有數(shù)依次構(gòu)成首項和公差都為2的等差數(shù)列.求數(shù)列的前50項和.21.(12分)如圖,在直三棱柱ABC-A1B1C1中,底面ABC是等邊三角形,D是AC的中點.(1)證明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.22.(10分)已知公差不為0的等差數(shù)列的前項和為,且,,成等比數(shù)列,且.(1)求的通項公式;(2)若,求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由,,共面,設,列方程組能求出λ的值【詳解】∵,,共面,∴設(實數(shù)m、n),即,∴,解得故選:C2、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過垂直于x軸的直線交橢圓C于A,B兩點,,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.3、B【解析】利用求解.【詳解】解:因為等差數(shù)列,的前n項和分別是,所以.故選:B4、C【解析】根據(jù)不等式解集為,得方程的解為或,且,利用韋達定理即可將用表示,即可判斷各選項的正誤.【詳解】解:因為不等式解集為,所以方程的解為或,且,所以,所以,所以,故ABD錯誤;,故C正確.故選:C.5、B【解析】首先分別設,,再根據(jù)橢圓的定義和性質(zhì)列出等式,即可求解橢圓的短軸長.【詳解】設,,所以,即,即,得,短軸長為.故選:B6、C【解析】應用正弦定理有,結(jié)合已知條件即可求A,B間的直線距離.【詳解】由題設,,在△中,,即,所以米.故選:C7、A【解析】根據(jù)導數(shù)與單調(diào)性的關系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A8、D【解析】根據(jù)前三個五邊形數(shù)可推斷出第四個五邊形數(shù).【詳解】第一個五邊形數(shù)為,第二個五邊形數(shù)為,第三個五邊形數(shù)為,故第四個五邊形數(shù)為.故選:D.9、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對應法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應用,考查了不等式的解法,屬于中檔題10、C【解析】求的最大值即求的最大值,根據(jù)約束條件畫出可行域,將目標函數(shù)看成直線,直線經(jīng)過可行域內(nèi)的點,將目標與直線的截距建立聯(lián)系,然后得到何時目標值取得要求的最值,進而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據(jù)實數(shù),滿足的條件作出可行域,如圖.將目標函數(shù)化為.則表示直線在軸上的截距的相反數(shù).要求的最大值,即求直線在軸上的截距最小值.如圖當直線過點時,在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.11、D【解析】由等比數(shù)列的性質(zhì)得,化簡,代入數(shù)值求解.【詳解】因為數(shù)列是等比數(shù)列,所以,由題意,所以.故選:D12、C【解析】利用等差數(shù)列的前n項和公式求解.【詳解】∵是等差數(shù)列,,∴,得,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出切線方程,分別得到直線與x、y軸交點,即可求出三角形的面積.【詳解】由函數(shù)可得:函數(shù),所以,.所以切線l:,即.令,得到;令,得到;所以l與坐標軸圍成的三角形面積為.故答案為:.14、3【解析】先求點坐標,再由已知得Q點坐標,由列方程得解.【詳解】拋物線:()的焦點,∵P為上一點,與軸垂直,所以P的橫坐標為,代入拋物線方程求得P的縱坐標為,不妨設,因為Q為軸上一點,且,所以Q在F的右側(cè),又,,,因為,所以,,所以3故答案為:3.15、(答案不唯一)【解析】設出拋物線方程,根據(jù)題意即可得出.【詳解】設拋物線的方程為,根據(jù)題意可得,所以拋物線的標準方程為.故答案為:(答案不唯一).16、或.【解析】根據(jù)曲線方程得曲線的軌跡是個半圓,數(shù)形結(jié)合分析得兩種情況:(1)直線與半圓相切有一個交點;(2)直線與半圓相交于一個點,綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個公共點有兩種情況:(1)直線與半圓相切,根據(jù),所以,結(jié)合圖像可得;(2)直線與半圓的上半部分相交于一個交點,由圖可知.故答案為:或.【點睛】方法點睛:處理直線與圓位置關系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結(jié)合進行分析.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當直線MN斜率不存在時,設直線方程為,則,,,,則,∴,此時直線MN的方程為當直線MN斜率存在時,設直線方程為:,與橢圓方程聯(lián)立:,得,設,,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結(jié)合是數(shù)學解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。18、(1)初中、高中年級所抽取人數(shù)分別為45、55(2)2.375小時,2.4小時(3)【解析】(1)依據(jù)分層抽樣的原則列方程即可解決;(2)依據(jù)頻率分布直方圖計算學生做作業(yè)時間的中位數(shù)和平均時長即可;(3)依據(jù)古典概型即可求得恰好1人來自初中年級,1人來自高中年級的概率.【小問1詳解】設初中、高中年級所抽取人數(shù)分別為x、y,由已知可得,解得;【小問2詳解】的頻率為,的頻率為,的頻率為因為,,所以中位數(shù)在區(qū)間上,設為x,則,解得,所以學生做作業(yè)時間的中位數(shù)為2.375小時;平均時長為小時.故估計學生做作業(yè)時間的中位數(shù)為2.375小時,平均時長為2.4小時【小問3詳解】2人來自初中年級,記為,,3人來自高中年級,記為,,,則從中任選2人,所有可能結(jié)果有:,,,,,,,,,共10種,其中恰好1人來自初中年級,1人來自高中年級有6種可能,所以恰好1人來自初中年級,1人來自高中年級的概率為19、(1)答案見解析(2)證明見解析【解析】(1)求出函數(shù)的導數(shù),討論其符號后可得函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論可得函數(shù)的最小值,再利用導數(shù)可證不等式.【小問1詳解】函數(shù)的定義域為,且,當時,在上恒成立,所以此時在上為增函數(shù),當時,由,解得,由,解得,所以在上為減函數(shù),在上為增函數(shù),綜上:當時,在上為增函數(shù),當時,在上為減函數(shù),在上為增函數(shù);【小問2詳解】由(1)知:當時,在上為增函數(shù),無最小值.當時,在上上為減函數(shù),在上為增函數(shù),所以,即,則,由,解得,由,解得,所以在上為增函數(shù),在上為減函數(shù),所以,即在上恒成立.20、(1)證明見解析;(2)2735.【解析】(1)利用給定的遞推公式結(jié)合“當時,”計算推理作答.(2)插入所有項構(gòu)成數(shù)列,,再確定數(shù)列的前50項中含有數(shù)列和的項數(shù)計算作答.【小問1詳解】依題意,,當時,,兩式相減得:,則有,而,即,所以數(shù)列是以2為首項,2為公式的等比數(shù)列.【小問2詳解】由(1)知,,即,插入的所有項構(gòu)成數(shù)列,,數(shù)列中前插入數(shù)列的項數(shù)為:,而前插入數(shù)列的項數(shù)為45,因此,數(shù)列的前50項中包含數(shù)列前9項,數(shù)列前41項,所以.21、(1)證明見解析(2)【解析】(1),連接,證明,再根據(jù)線面平行的判定定理即可得證;(2)說明平面,取的中點F,連接,以D為原點,分別以的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標系,利用向量法即可得出答案.【小問1詳解】證明:記,連接,由直棱柱的性質(zhì)可知四邊形是矩形,則E為的中點.因為D是的中點,所以,又平面平面,所以平面;【小問2詳解】因為底面是等邊三角形,D是的中點,所以,由直棱柱的性質(zhì)可知平面平面,平面平面,面,所以平面,取的中點F,連接,則兩兩垂直,故以D為原

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論