版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆湖南省益陽市資陽區(qū)第六中學(xué)高一上數(shù)學(xué)期末達(dá)標(biāo)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知某產(chǎn)品的總成本C(單位:元)與年產(chǎn)量Q(單位:件)之間的關(guān)系為C=310Q2+3000.設(shè)該產(chǎn)品年產(chǎn)量為Q時(shí)的平均成本為fA.30 B.60C.900 D.1802.“是第一象限角”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設(shè)函數(shù)的最小值為-1,則實(shí)數(shù)的取值范圍是A. B.C. D.4.已知集合,則()A. B.C. D.5.下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調(diào)遞增的是()A. B.C. D.6.圓與圓有()條公切線A.0 B.2C.3 D.47.,,,則的大小關(guān)系為()A. B.C. D.8.如圖來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形.此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC.△ABC的三邊所圍成的區(qū)域記為I,黑色部分記為II,其余部分記為III.在整個(gè)圖形中隨機(jī)取一點(diǎn),此點(diǎn)取自I,II,III的概率分別記為p1,p2,p3,則A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p39.如圖,在平面四邊形ABCD,,,,.若點(diǎn)E為邊上的動(dòng)點(diǎn),則的取值范圍為()A. B.C. D.10.已知集合,集合,則下列結(jié)論正確的是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則不等式的解集為______12.設(shè)函數(shù)是定義在上的奇函數(shù),且,則___________13.若()與()互為相反數(shù),則的最小值為______.14.設(shè),,則的取值范圍是______.15.已知函數(shù),則______16.函數(shù)的圖象恒過定點(diǎn),點(diǎn)在冪函數(shù)的圖象上,則=____________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐的底面為正方形,底面,分別是的中點(diǎn).(1)求證:平面;(2)求證:平面平面.18.已知函數(shù)(,且).(1)求的值,并證明不是奇函數(shù);(2)若,其中e是自然對數(shù)的底數(shù),證明:存在不為0的零點(diǎn),并求.注:設(shè)x為實(shí)數(shù),表示不超過x的最大整數(shù).參考數(shù)據(jù):,,,.19.已知函數(shù)fx(1)求實(shí)數(shù)a的值;(2)當(dāng)a>0時(shí),①判斷fx②對任意實(shí)數(shù)x,不等式fsin2x+20.如圖,在四棱錐中,是正方形,平面,,,,分別是,,的中點(diǎn)()求四棱錐的體積()求證:平面平面()在線段上確定一點(diǎn),使平面,并給出證明21.函數(shù)是奇函數(shù).(1)求的解析式;(2)當(dāng)時(shí),恒成立,求m的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】利用基本不等式進(jìn)行最值進(jìn)行解題.【詳解】解:∵某產(chǎn)品的總成本C(單位:元)與年產(chǎn)量Q(單位:件)之間的關(guān)系為C=∴f(Q)=當(dāng)且僅當(dāng)3Q10=3000Q∴fQ的最小值是60故選:B2、B【解析】根據(jù)充分、必要條件的定義,結(jié)合角的概念,即可得答案.【詳解】若是第一象限角,則,無法得到一定屬于,充分性不成立,若,則一定第一象限角,必要性成立,所以“是第一象限角”是“”的必要不充分條件.故選:B3、C【解析】當(dāng)時(shí),為增函數(shù),最小值為,故當(dāng)時(shí),,分離參數(shù)得,函數(shù)開口向下,且對稱軸為,故在遞增,,即.考點(diǎn):分段函數(shù)的最值.【思路點(diǎn)晴】本題主要考查分段函數(shù)值域問題,由于函數(shù)的最小值為,所以要在兩段函數(shù)圖象都要討論最小值.首先考慮沒有參數(shù)的一段,當(dāng)時(shí),為增函數(shù),最小值為.由于這一段函數(shù)值域已經(jīng)包括了最小值,故當(dāng)時(shí),值域應(yīng)該不小于,分離常數(shù)后利用二次函數(shù)圖象與性質(zhì)可求得參數(shù)的取值范圍.4、D【解析】由交集的定義求解即可【詳解】,由題意,作數(shù)軸如圖:故,故選:D.5、D【解析】根據(jù)題意,依次判斷選項(xiàng)中函數(shù)的奇偶性、單調(diào)性,從而得到正確選項(xiàng).【詳解】根據(jù)題意,依次判斷選項(xiàng):對于A,,是非奇非偶函數(shù),不符合題意;對于B,,是余弦函數(shù),是偶函數(shù),在區(qū)間上不是單調(diào)函數(shù),不符合題意;對于C,,是奇函數(shù),不是偶函數(shù),不符合題意;對于D,,是二次函數(shù),其開口向下對稱軸為y軸,既是偶函數(shù)又在上單調(diào)遞增,故選:D.6、B【解析】由題意可知圓的圓心為,半徑為,圓的圓心為半徑為∵兩圓的圓心距∴∴兩圓相交,則共有2條公切線故選B7、D【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性得到,根據(jù)指數(shù)函數(shù)的單調(diào)性得到,根據(jù)正弦函數(shù)的單調(diào)性得到.【詳解】易知,,因,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以,所以.故選:D.8、A【解析】首先設(shè)出直角三角形三條邊的長度,根據(jù)其為直角三角形,從而得到三邊的關(guān)系,然后應(yīng)用相應(yīng)的面積公式求得各個(gè)區(qū)域的面積,根據(jù)其數(shù)值大小,確定其關(guān)系,再利用面積型幾何概型的概率公式確定出p1,p2,p3的關(guān)系,從而求得結(jié)果.【詳解】設(shè),則有,從而可以求得的面積為,黑色部分的面積為,其余部分的面積為,所以有,根據(jù)面積型幾何概型的概率公式,可以得到,故選A.點(diǎn)睛:該題考查的是面積型幾何概型的有關(guān)問題,題中需要解決的是概率的大小,根據(jù)面積型幾何概型的概率公式,將比較概率的大小問題轉(zhuǎn)化為比較區(qū)域的面積的大小,利用相關(guān)圖形的面積公式求得結(jié)果.9、A【解析】由已知條件可得,設(shè),則,由,展開后,利用二次函數(shù)性質(zhì)求解即可.【詳解】∵,因?yàn)?,,,所以,連接,因?yàn)?,所以≌,所以,所以,則,設(shè),則,∴,,,,所以,因?yàn)?,所?故選:A10、B【解析】由題意得,結(jié)合各選項(xiàng)知B正確.選B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分x小于等于0和x大于0兩種情況根據(jù)分段函數(shù)分別得到f(x)的解析式,把得到的f(x)的解析式分別代入不等式得到兩個(gè)一元二次不等式,分別求出各自的解集,求出兩解集的并集即可得到原不等式的解集【詳解】解:當(dāng)x≤0時(shí),f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集為[-1,0];當(dāng)x>0時(shí),f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集為[0,1],綜上原不等式的解集為[-1,1].故答案為[-1,1]【點(diǎn)睛】此題考查了不等式的解法,考查了轉(zhuǎn)化思想和分類討論的思想,是一道基礎(chǔ)題12、【解析】先由已知條件求出的函數(shù)關(guān)系式,也就是當(dāng)時(shí)的函數(shù)關(guān)系式,再求得,然后求的值即可【詳解】解:當(dāng)時(shí),,∴,∵函數(shù)是定義在上的奇函數(shù),∴,∴,即由題意得,∴故答案為:【點(diǎn)睛】此題考查了分段函數(shù)求值,考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.13、2【解析】有題設(shè)得到,利用基本不等式求得最小值.【詳解】由題知,,則,,則,當(dāng)且僅當(dāng)時(shí)等號成立,故答案為:214、【解析】由已知求得,然后應(yīng)用誘導(dǎo)公式把求值式化為一個(gè)角的一個(gè)三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)求得范圍【詳解】,,所以,所以,,,,故答案為:15、【解析】由分段函數(shù)解析式先求,再求.【詳解】由已知可得,故.故答案為:2.16、【解析】因?yàn)楹瘮?shù)圖象恒過定點(diǎn),則可之令2x-3=1,x=2,函數(shù)值為4,故過定點(diǎn)(2,4),然后根據(jù)且點(diǎn)在冪函數(shù)的圖象上,設(shè),故可知=9,故答案為9.考點(diǎn):對數(shù)函數(shù)點(diǎn)評:本題考查了對數(shù)函數(shù)圖象過定點(diǎn)(1,0),即令真數(shù)為1求對應(yīng)的x和y,則是所求函數(shù)過定點(diǎn)的坐標(biāo)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)連接BD,根據(jù)線面平行的判定定理只需證明EF∥PD即可;(2)利用線面垂直的判定定理可得面,再利用面面垂直的判定定理即證【小問1詳解】如圖,連結(jié),則是的中點(diǎn),又是的中點(diǎn),∴,又∵平面,面,∴平面;【小問2詳解】∵底面是正方形,∴,∵平面,平面,∴,又,∴面,又平面,故平面平面.18、(1),證明見解析(2)證明見解析,【解析】(1)利用,可證明;(2)利用零點(diǎn)的判定方法證明(5),可求得【小問1詳解】證明:,,,,不是奇函數(shù);【小問2詳解】,,(5),(5),存在不為0的零點(diǎn)19、(1)a=1或a=-1(2)①fx在R【解析】(1)依題意可得fx(2)①根據(jù)復(fù)合函數(shù)的單調(diào)性判斷可得;②根據(jù)函數(shù)的單調(diào)性與奇偶性可得sin2x+cosx<2m-3在R上恒成立,由【小問1詳解】解:因?yàn)楹瘮?shù)fx所以fx+f(-x)=0,即可得1+x2+ax則(1-a2)x2【小問2詳解】①因?yàn)閍>0,所以a=1.函數(shù)fx=ln因?yàn)閥=1+x2+x與y=ln②對任意實(shí)數(shù)x,f(sin2x+由①知函數(shù)fx在R可得sin2x+cos因?yàn)閟in2所以2m-3>54于是正整數(shù)m的最小值為320、(1)(2)見解析(3)當(dāng)為線段的中點(diǎn)時(shí),滿足使平面【解析】(1)根據(jù)線面垂直確定高線,再根據(jù)錐體體積公式求體積(2)先尋找線線平行,根據(jù)線面平行判定定理得線面平行,最后根據(jù)面面平行判定定理得結(jié)論(3)由題意可得平面,即,取線段的中點(diǎn),則有,而,根據(jù)線面垂直判定定理得平面試題解析:()解:∵平面,∴()證明:∵,分別是,的中點(diǎn)∴,由正方形,∴,又平面,∴平面,同理可得:,可得平面,又,∴平面平面()解:當(dāng)為線段中點(diǎn)時(shí),滿足使平面,下面給出證明:取的中點(diǎn),連接,,∵,∴四點(diǎn),,,四點(diǎn)共面,由平面,∴,又,,∴平面,∴,又為等腰三角形,為斜邊中點(diǎn),∴,又,∴平面,即平面點(diǎn)睛:(1)探索性問題通常用“肯定順推法”,將不確定性問題明朗化.其步驟為假設(shè)滿足條件的元素(點(diǎn)、直線、曲線或參數(shù))存在,用待定系數(shù)法設(shè)出,列出關(guān)于待定系數(shù)的方程組,若方程組有實(shí)數(shù)解,則元素(點(diǎn)、直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 會(huì)計(jì)學(xué)堂考試試題及答案
- 快速適應(yīng)新環(huán)境能力測試題及答案
- 2025年國家公務(wù)員政治理論知識考試練習(xí)題(含答案)
- 2025年《醫(yī)療器械經(jīng)營監(jiān)督管理辦法》試題及答案
- 營救人質(zhì)考試題及答案
- LG(中國)校招面試題及答案
- 大學(xué)思修試題題庫及答案
- 未來五年自動(dòng)化測試設(shè)備企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報(bào)告
- 中煤第三建設(shè)集團(tuán)(貴州)有限責(zé)任公司項(xiàng)目部管技人員招聘參考題庫附答案
- 興業(yè)銀行2026春季校園招聘備考題庫附答案
- 2025年云南省普洱市事業(yè)單位招聘考試(833人)高頻重點(diǎn)提升(共500題)附帶答案詳解
- DB15-T 3677-2024 大興安嶺林區(qū)白樺樹汁采集技術(shù)規(guī)程
- 2024年《13464電腦動(dòng)畫》自考復(fù)習(xí)題庫(含答案)
- 義務(wù)教育階段學(xué)生語文核心素養(yǎng)培養(yǎng)的思考與實(shí)踐
- 綜合利用1噸APT渣項(xiàng)目研究報(bào)告樣本
- JT-T 1495-2024 公路水運(yùn)危險(xiǎn)性較大工程專項(xiàng)施工方案編制審查規(guī)程
- 圓錐曲線壓軸題30題2023
- 浙江省杭州市2022-2023學(xué)年四年級上學(xué)期語文期末試卷(含答案)2
- 試模報(bào)告模板
- 《我們?yōu)槭裁匆獙W(xué)習(xí)》的主題班會(huì)
- 海岸動(dòng)力學(xué)課后習(xí)題答案詳解
評論
0/150
提交評論