貴州省畢節(jié)市織金第一中學2026屆高二數學第一學期期末調研模擬試題含解析_第1頁
貴州省畢節(jié)市織金第一中學2026屆高二數學第一學期期末調研模擬試題含解析_第2頁
貴州省畢節(jié)市織金第一中學2026屆高二數學第一學期期末調研模擬試題含解析_第3頁
貴州省畢節(jié)市織金第一中學2026屆高二數學第一學期期末調研模擬試題含解析_第4頁
貴州省畢節(jié)市織金第一中學2026屆高二數學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省畢節(jié)市織金第一中學2026屆高二數學第一學期期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,過點的直線交拋物線于,兩點,則的取值范圍是()A. B.C. D.2.函數的值域為()A. B.C. D.3.的三個內角A,B,C所對的邊分別為a,b,c,若,則()A. B.C. D.4.等比數列的前項和為,若,則()A. B.8C.1或 D.或5.某程序框圖如圖所示,該程序運行后輸出的值是()A. B.C. D.6.函數在上的最小值為()A. B.C.-1 D.7.已知雙曲線的左、右焦點分別為,點在的左支上,過點作的一條漸近線的垂線,垂足為,則的最小值為()A. B.C. D.8.某公司有1000名員工,其中:高層管理人員為50名,屬于高收入者;中層管理人員為150名,屬于中等收入者;一般員工為800名,屬于低收入者.要對這個公司員工的收入情況進行調查,欲抽取100名員工,應當抽取的一般員工人數為()A.100 B.15C.80 D.509.平面上動點到點的距離與它到直線的距離之比為,則動點的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓10.函數,則的值為()A. B.C. D.11.在平面直角坐標系中,橢圓的左、右焦點分別為,,過且垂直于軸的直線與交于,兩點,與軸交于點,,則的離心率為()A. B.C. D.12.等差數列中,已知,則()A.36 B.27C.18 D.9二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,O是AD邊中點,底面ABCD..在底面ABCD中,,,,.(1)求證:平面POC;(2)求直線PC與平面PAB所成角的正弦值.14.,若2是與的等比中項,則的最小值為___________.15.如圖,已知橢圓+y2=1的左焦點為F,O為坐標原點,設過點F且不與坐標軸垂直的直線交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,則點G橫坐標的取值范圍為________16.已知一個樣本數據為3,3,5,5,5,7,7,現(xiàn)在新加入一個3,一個5,一個7得到一個新樣本,則與原樣本數據相比,新樣本數據平均數______,方差______.(“變大”、“變小”、“不變”)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點為F,右頂點為,M是橢圓上一點.軸且(1)求橢圓C的標準方程;(2)直線與橢圓C交于E,H兩點,點G在橢圓C上,且四邊形平行四邊形(其中O為坐標原點),求18.(12分)已知等差數列滿足;正項等比數列滿足,,(1)求數列,的通項公式;(2)數列滿足,的前n項和為,求的最大值.19.(12分)某校高二年級全體學生參加了一次數學測試,學校利用簡單隨機抽樣的方法從甲班、乙班各抽取五名同學的數學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數據的中位數相等且平均數也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.20.(12分)在平面直角坐標系xOy中,已知橢圓的左、右焦點分別是,,離心率,請再從下面兩個條件中選擇一個作為已知條件,完成下面的問題:①橢圓C過點;②以點為圓心,3為半徑的圓與以點為圓心,1為半徑的圓相交,且交點在橢圓C上(只能從①②中選擇一個作為已知)(1)求橢圓C的方程;(2)已知過點的直線l交橢圓C于M,N兩點,點N關于x軸的對稱點為,且,M,三點構成一個三角形,求證:直線過定點,并求面積的最大值.21.(12分)已知中,內角的對邊分別為,且滿足.(1)求的值;(2)若,求面積的最大值.22.(10分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】當直線斜率存在時,設直線方程,聯(lián)立方程組,結合根與系數關系可得,進而求得取值范圍,當斜率不存在是,可得,兩點坐標,進而可得的值.【詳解】當直線斜率存在時,設直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當直線斜率不存在時,直線方程為,所以,,,綜上所述:,故選:B.2、C【解析】根據基本不等式即可求出【詳解】因為,當且僅當時取等號,所以函數的值域為故選:C3、D【解析】利用正弦定理邊化角,角化邊計算即可.【詳解】由正弦定理邊化角得,,再由正弦定理角化邊得,即故選:D.4、C【解析】根據等比數列的前項和公式及等比數列通項公式即可求解.【詳解】設等比數列的公比為,則因為,所以,即,解得或,所以或.故選:C.5、B【解析】模擬程序運行后,可得到輸出結果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進入循環(huán)結構,1),判斷為否,進入循環(huán)結構,2),判斷為否,進入循環(huán)結構,3),判斷為否,進入循環(huán)結構,……9),判斷為否,進入循環(huán)結構,10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結果時,常模擬程序運行以得到結論.6、D【解析】求出函數的導函數,根據導數的符號求出函數的單調區(qū)間,再根據函數的單調性即可得出答案.【詳解】解:因為,所以,當時,,單調遞減;當時,,單調遞增,故.故選:D.7、D【解析】利用雙曲線定義可得到,將的最小值變?yōu)榈淖钚≈祮栴},數形結合得解.【詳解】由題意得,故,如圖所示:到漸近線的距離,則,當且僅當,,三點共線時取等號,∴的最小值為.故選:D8、C【解析】按照比例關系,分層抽取.【詳解】由題意可知,所以應當抽取的一般員工人數為.故選:C9、A【解析】設點,利用距離公式化簡可得出點的軌跡方程,即可得出動點的軌跡圖形.【詳解】設點,由題意可得,化簡可得,即,曲線為反比例函數圖象,故動點的軌跡是雙曲線.故選:A.10、B【解析】求出函數的導數,代入求值即可.【詳解】函數,故,所以,故選:B11、B【解析】由題意結合幾何性質可得為等腰三角形,且,所以,求出的長,結合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點,則為的中點,又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B12、B【解析】直接利用等差數列的求和公式及等差數列的性質求解.【詳解】解:由題得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、(1)證明見解析(2)【解析】(1)由題意,證明BCOA是平行四邊形,從而可得,然后根據線面平行的判斷定理即可證明;(2)證明BCDO是平行四邊形,從而可得,由題意,可建立以為軸建立空間直角坐標系,求出平面ABP的法向量,利用向量法即可求解直線PC與平面PAB所成角的正弦值為.【小問1詳解】證明:由題意,又,所以BCOA是平行四邊形,所以,又平面POC,平面POC,所以平面POC;【小問2詳解】解:,,所以BCDO是平行四邊形,所以,,而,所以,以為軸建立空間直角坐標系,如圖,則,設平面ABP的一個法向量為,則,取x=1,則,,所以,設直線PC與平面PAB所成角為,則,所以直線PC與平面PAB所成角的正弦值為.14、3【解析】根據等比中項列方程,結合基本不等式求得的最小值.【詳解】由題可得,則,當且僅當時等號成立.故答案為:15、【解析】設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,求出線段的垂直平分線方程,可求得點的橫坐標,利用不等式的基本性質可求得點的橫坐標的取值范圍.【詳解】設直線的方程為,聯(lián)立,整理可得,因為直線過橢圓的左焦點,所以方程有兩個不相等的實根設點、,設的中點為,則,,直線的垂直平分線的方程為,令,則.因為,所以故點的橫坐標的取值范圍.故答案為:16、①.不變②.變大【解析】通過計算平均數和方差來確定正確答案.【詳解】原樣本平均數為,原樣本方差為,新樣本平均數為,新樣本方差為.所以平均數不變,方差變大.故答案為:不變;變大三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據橢圓的簡單幾何性質即可求出;(2)設,聯(lián)立與橢圓方程,求出,再根據平行四邊形的性質求出點的坐標,然后由點G在橢圓C上,可求出,從而可得【小問1詳解】∵橢圓C的右頂點為,∴,∵軸,且,∴,∴,所以橢圓C的標準方程為【小問2詳解】設,將直線代入,消去y并整理得,由,得.(*)由根與系數的關系可得,∴,∵四邊形為平行四邊形,∴,得,將G點坐標代人橢圓C的方程得,滿足(*)式∴18、(1),(2)8【解析】(1)利用已知的關系把替換成,再把兩式作差后整理即得通項公式,的通項公式可由已知條件建立基本量的方程求解.(2)由的通項公式可判斷,,,當時,所有正項的和即為的最大項的值.小問1詳解】,,兩式相減得所以,又也滿足,故;設等比數列的公比為,由得,即,因為,即,,(負值舍去),所以【小問2詳解】由題意,,則,,,且當時,所以的最大值是.19、(1),(2)【解析】(1)根據莖葉圖得甲班中位數為,由此能求出,根據由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學中隨機抽出兩名,用列舉法寫出基本事件總數,再利用古典概型的概率計算公式即可求解.【小問1詳解】根據莖葉圖可知1班中位數為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學中隨機抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為20、(1)(2)證明見解析,【解析】(1)若選①,則由題意可得,解方程組求出,從而可求得橢圓方程,若選②,,再結合離心率和求出,從而可求得橢圓方程,(2)由題意設直線MN的方程為,設,,,將直線方程代入橢圓方程中,消去,再利用根與系數的關系,表示出直線的方程,令,求出,結合前面的式子化簡可得線過的定點,表示出的面積,利用基本不等式可求得其最大值【小問1詳解】若選①:由題意知,∴.所以橢圓C的方程為.若選②:設圓與圓相交于點Q.由題意知:.又因為點Q在橢圓上,所以,∴.又因為,∴,∴.所以橢圓C的方程為.【小問2詳解】由題易知直線MN斜率存在且不為0,因為,故設直線MN方程為,設,,,∴,∴,,因為點N關于x軸對稱點為,所以,所以直線方程為,令,∴.又,∴.所以直線過定點,∴.當且僅當,即時,取等號.所以面積的最大值為.21、(1)2;(2).【解析】(1)利用正弦定理以及逆用兩角和的正弦公式得出,而,即可求出的值;(2)根據題意,由余弦定理得,再根據基本不等式求得,當且僅當時取得等號,即可求出面積的最大值.【小問1詳解】解:由題意得,由正弦定理得:,即,即,因為,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論