陜西省西安工業(yè)大學附中2026屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
陜西省西安工業(yè)大學附中2026屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
陜西省西安工業(yè)大學附中2026屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
陜西省西安工業(yè)大學附中2026屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
陜西省西安工業(yè)大學附中2026屆高一上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省西安工業(yè)大學附中2026屆高一上數(shù)學期末學業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù)滿足,則函數(shù)的零點所在的區(qū)間是()A. B.C. D.2.已知圓與圓相離,則的取值范圍()A. B.C. D.3.如圖,直線與單位圓相切于點,射線從出發(fā),繞著點逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,記(),所經(jīng)過的單位圓內(nèi)區(qū)域(陰影部分)的面積為,記,則下列選項判斷正確的是A.當時,B.對任意,且,都有C.對任意,都有D.對任意,都有4.角的終邊落在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知扇形的半徑為,面積為,則這個扇形的圓心角的弧度數(shù)為()A. B.C. D.6.函數(shù)在上最大值與最小值之和是()A. B.C. D.7.某甲、乙兩人練習跳繩,每人練習10組,每組40個.每組計數(shù)的莖葉圖如下圖,則下面結(jié)論中錯誤的一個是()A.甲比乙的極差大B.乙的中位數(shù)是18C.甲的平均數(shù)比乙的大D.乙的眾數(shù)是218.與-2022°終邊相同的最小正角是()A.138° B.132°C.58° D.42°9.的值為A. B.C. D.10.若,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若角的終邊與角的終邊相同,則在內(nèi)與角的終邊相同的角是______12.如圖,正方形ABCD中,M,N分別是BC,CD中點,若,則______.13.已知在平面直角坐標系中,角頂點在原點,始邊與軸的正半軸重合,終邊經(jīng)過點,則___________.14.直線,當變動時,所有直線都通過定點______.15.過正方體的頂點作直線,使與棱、、所成的角都相等,這樣的直線可以作_________條.16.若將函數(shù)的圖像向左平移個單位后所得圖像關(guān)于軸對稱,則的最小值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過,兩點,且圓心在直線:上.(Ⅰ)求圓的方程;(Ⅱ)若點在直線:上,過點作圓的一條切線,為切點,求切線長的最小值;(Ⅲ)已知點為,若在直線:上存在定點(不同于點),滿足對于圓上任意一點,都有為一定值,求所有滿足條件點的坐標.18.求同時滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長為的圓的方程19.某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,已知投資1萬元時兩類產(chǎn)品的收益分別為萬元和萬元(如圖).(1)分別寫出兩種產(chǎn)品的收益和投資的函數(shù)關(guān)系;(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大的收益,其最大收益為多少萬元?20.(1)若正數(shù)a,b滿足,求的最小值,并求出對應(yīng)的a,b的值;(2)若正數(shù)x,y滿足,求的取值范圍21.如圖,四邊形中,,,,,、分別在、上,,現(xiàn)將四邊形沿折起,使平面平面()若,是否存在折疊后的線段上存在一點,且,使得平面?若存在,求出的值;若不存在,說明理由()求三棱錐的體積的最大值,并求此時點到平面的距離

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由已知可得,結(jié)合零點存在定理可判斷零點所在區(qū)間.【詳解】由已知得,所以,又,,,,所以零點所在區(qū)間為,故選:B.2、D【解析】∵圓的圓心為,半徑為,圓的標準方程為,則又兩圓相離,則:,本題選擇D選項.點睛:判斷兩圓的位置關(guān)系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關(guān)系,一般不采用代數(shù)法3、C【解析】對于,當,故錯誤;對于,由題可知對于任意,為增函數(shù),所以與的正負相同,則,故錯誤;對于,由,得對于任意,都有;對于,當時,,故錯誤.故選CD對任意,都有4、A【解析】由于,所以由終邊相同的定義可得結(jié)論【詳解】因為,所以角的終邊與角的終邊相同,所以角的終邊落在第一象限角故選:A5、A【解析】由扇形的面積公式即可求解.【詳解】解:設(shè)扇形圓心角的弧度數(shù)為,則扇形面積為,解得,因為,所以扇形的圓心角的弧度數(shù)為4.故選:A6、A【解析】直接利用的范圍求得函數(shù)的最值,即可求解.【詳解】∵,∴,∴,∴最大值與最小值之和為,故選:.7、B【解析】通過莖葉圖分別找出甲、乙的最大值以及最小值求出極差即可判斷A;找出乙中間的兩位數(shù)即可判斷B;分別求出甲、乙的平均數(shù)判斷C;觀察乙中數(shù)據(jù)即可判斷D;【詳解】對于A,由莖葉圖可知,甲的極差為,乙的極差為,故A正確;對于B,乙中間兩位數(shù)為,故中位數(shù)為,故B錯誤;對于C,甲的平均數(shù)為,乙的平均數(shù)為,故C正確;對于D,乙組數(shù)據(jù)中出現(xiàn)次數(shù)最多為21,故D正確;故選:B【點睛】本題考查了由莖葉圖估計樣本數(shù)據(jù)的數(shù)字特征,屬于基礎(chǔ)題.8、A【解析】根據(jù)任意角的周期性,將-2022°化為,即可確定最小正角.【詳解】由-2022°,所以與-2022°終邊相同的最小正角是138°.故選:A9、C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故選C.10、A【解析】應(yīng)用輔助角公式將條件化為,再應(yīng)用誘導(dǎo)公式求.【詳解】由題設(shè),,則,又.故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)角的終邊與角的終邊相同,得到,再得到,然后由列式,根據(jù),可得整數(shù)的值,從而可得.【詳解】∵(),∴()依題意,得(),解得(),∴,∴在內(nèi)與角的終邊相同的角為故答案為【點睛】本題考查了終邊相同的角的表示,屬于基礎(chǔ)題.12、【解析】以,為基底,由平面向量基本定理,列方程求解,即可得出結(jié)果.【詳解】設(shè),則,由于可得,解得,所以故答案為:【點睛】本題考查平面向量基本定理的運用,考查向量的加法運算,考查運算求解能力,屬于中檔題.13、【解析】根據(jù)角的終邊經(jīng)過點,利用三角函數(shù)的定義求得,然后利用二倍角公式求解.【詳解】因為角的終邊經(jīng)過點,所以,所以,所以,故答案為:14、(3,1)【解析】將直線方程變形為,得到,解出,即可得到定點坐標.【詳解】由,得,對于任意,式子恒成立,則有,解出,故答案為:(3,1).【點睛】本題考查直線過定點問題,直線一定過兩直線、的交點.15、【解析】將小正方體擴展成4個小正方體,根據(jù)直線夾角的定義即可判斷出符合條件的條數(shù)【詳解】解:設(shè)ABCD﹣A1B1C1D1邊長為1第一條:AC1是滿足條件的直線;第二條:延長C1D1到C1且D1C2=1,AC2是滿足條件的直線;第三條:延長C1B1到C3且B1C3=1,AC3是滿足條件的直線;第四條:延長C1A1到C4且C4A1,AC4是滿足條件的直線故答案為4【點睛】本題考查滿足條件的直線條數(shù)的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,考查分類與整合思想,是基礎(chǔ)題16、【解析】利用輔助角公式將函數(shù)化簡,再根據(jù)三角函數(shù)的平移變換及余弦函數(shù)的性質(zhì)計算可得;【詳解】解:因,將的圖像向左平移個單位,得到,又關(guān)于軸對稱,所以,,所以,所以當時取最小值;故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根據(jù)題意,設(shè)出圓的標準方程,代入條件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小時,垂直于直線,據(jù)此可得結(jié)論;(Ⅲ)設(shè),,列出相應(yīng)等式化簡,再利用點的任意性,列出方程組求解即可.【詳解】(Ⅰ)設(shè)圓的方程為,根據(jù)題意有,解得,所以圓的方程為;(Ⅱ)由勾股定理得,即,所以要求的最小值,即求的最小值,而當垂直于直線時,最小,此時,所以的最小值為;(Ⅲ)設(shè),滿足,假設(shè)的定值為,則,化簡得,因為對于圓上任意一點上式都成立,所以,解得(舍),因此滿足條件點的坐標為.【點睛】本題涉及圓與直線的綜合應(yīng)用,利用了數(shù)形結(jié)合等思想,考查了學生分析解決問題的能力,綜合性較強.在答題時要注意:①線外一點到線上一點的距離中,垂線段最短;②解決任意性問題的關(guān)鍵是令含參部分的系數(shù)為0,最常見的就是過定點問題.18、或.【解析】根據(jù)題意,設(shè)圓心為,圓被直線截得的弦為為的中點,連結(jié).由垂徑定理和點到直線的距離公式,建立關(guān)于的方程并解出值,即可得到滿足條件的圓的標準方程【詳解】試題解析:設(shè)所求的圓的方程是,則圓心到直線的距離為,①由于所求的圓與x軸相切,所以②又因為所求圓心在直線上,則③聯(lián)立①②③,解得,或.故所求的圓的方程是或.19、(1)投資債券,投資股票;(2)投資債券類產(chǎn)品萬元,股票類投資為4萬元,收益最大值為萬元.【解析】(1)設(shè)函數(shù)解析式,,代入即可求出的值,即可得函數(shù)解析式;(2)設(shè)投資債券類產(chǎn)品萬元,則股票類投資為萬元,年收益為萬元,則,代入解析式,換元求最值即可.【詳解】(1)設(shè).由題意可得:,,所以,,(2)設(shè)投資債券類產(chǎn)品萬元,則股票類投資為萬元,年收益為萬元依題意得即.令則,則所以當即時,收益最大為萬元,所以投資債券類產(chǎn)品萬元,股票類投資為4萬元,收益最大值為萬元.20、(1)當且僅當時,取得最小值為18;(2)【解析】(1)化簡得,再利用基本不等式求最值;(2)由題得,再解一元二次不等式得解.【詳解】(1)原式,當且僅當時取等號,所以最小值為18.(2),即,即,解得,所以,當且僅當取等號所以的取值范圍為21、(1)答案見解析;(2)答案見解析.【解析】(1)存在,使得平面,此時,即,利用幾何關(guān)系可知四邊形為平行四邊形,則,利用線面平行的判斷定理可知平面成立(2)由題意可得三棱錐的體積,由均值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論