2026屆福建省尤溪一中高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第1頁
2026屆福建省尤溪一中高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第2頁
2026屆福建省尤溪一中高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第3頁
2026屆福建省尤溪一中高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第4頁
2026屆福建省尤溪一中高一數(shù)學第一學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆福建省尤溪一中高一數(shù)學第一學期期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知冪函數(shù)過點,則在其定義域內()A.為偶函數(shù) B.為奇函數(shù)C.有最大值 D.有最小值2.當點在圓上變動時,它與定點的連線的中點的軌跡方程是()A. B.C. D.3.已知,設函數(shù),的最大值為A,最小值為B,那么A+B的值為()A.4042 B.2021C.2020 D.20244.如圖,在中,是的中點,若,則實數(shù)的值是A. B.1C. D.5.已知圓與圓相離,則的取值范圍()A. B.C. D.6.已知,則等于()A.1 B.2C.3 D.67.函數(shù)的定義域是()A. B.C. D.(0,4)8.棱長分別為1、、2的長方體的8個頂點都在球的表面上,則球的體積為A. B.C. D.9.若兩平行直線與之間的距離是,則A.0 B.1C.-2 D.-110.已知集合,則=A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.____.12.在中,,則等于______13.已知且,且,函數(shù)的圖象過定點A,A在函數(shù)的圖象上,且函數(shù)的反函數(shù)過點,則______.14.如圖,在直四棱柱中,當?shù)酌鍭BCD滿足條件___________時,有.(只需填寫一種正確條件即可)15.已知是偶函數(shù),且方程有五個解,則這五個解之和為______16.計算=_______________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)已知方程,的值(2)已知是關于的方程的兩個實根,且,求的值18.已知函數(shù),.(1)求函數(shù)的最小正周期和單調遞減區(qū)間;(2)用括號中的正確條件填空.函數(shù)的圖象可以用下面的方法得到:先將正弦曲線,向___________(左,右)平移___________(,)個單位長度;在縱坐標不變的條件下再把所得曲線上各點的橫坐標變?yōu)樵瓉淼腳__________(,2)倍,再在橫坐標不變的條件下把所得曲線上各點的縱坐標變?yōu)樵瓉淼腳__________(,2)倍,最后再把所得曲線向___________(上,下)平移___________(1,2)個單位長度.19.如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,點D是AB的中點(1)求證:CD⊥平面A1ABB1;(2)求證:AC1∥平面CDB120.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(1)求證:EF∥平面ABD1;(2)AA1=,求異面直線EF與BC所成角的正弦值21.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)(Ⅰ)若是奇函數(shù),求的值(Ⅱ)當時,求函數(shù)在上的值域,判斷函數(shù)在上是否為有界函數(shù),并說明理由(Ⅲ)若函數(shù)在上是以為上界的函數(shù),求實數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】設冪函數(shù)為,代入點,得到,判斷函數(shù)的奇偶性和值域得到答案.【詳解】設冪函數(shù)為,代入點,即,定義域為,為偶函數(shù)且故選:【點睛】本題考查了冪函數(shù)的奇偶性和值域,意在考查學生對于函數(shù)性質的綜合應用.2、D【解析】設中點的坐標為,則,利用在已知的圓上可得的中點的軌跡方程.【詳解】設中點的坐標為,則,因為點在圓上,故,整理得到.故選:D.【點睛】求動點的軌跡方程,一般有直接法和間接法,(1)直接法,就是設出動點的坐標,已知條件可用動點的坐標表示,化簡后可得動點的軌跡方程,化簡過程中注意變量的范圍要求.(2)間接法,有如下幾種方法:①幾何法:看動點是否滿足一些幾何性質,如圓錐曲線的定義等;②動點轉移:設出動點的坐標,其余的點可以前者來表示,代入后者所在的曲線方程即可得到欲求的動點軌跡方程;③參數(shù)法:動點的橫縱坐標都可以用某一個參數(shù)來表示,消去該參數(shù)即可動點的軌跡方程.3、D【解析】由已知得,令,則,由的單調性可求出最大值和最小值的和為,即可求解.【詳解】函數(shù)令,∴,又∵在,時單調遞減函數(shù);∴最大值和最小值的和為,函數(shù)的最大值為,最小值為;則;故選:4、C【解析】以作為基底表示出,利用平面向量基本定理,即可求出【詳解】∵分別是的中點,∴.又,∴.故選C.【點睛】本題主要考查平面向量基本定理以及向量的線性運算,意在考查學生的邏輯推理能力5、D【解析】∵圓的圓心為,半徑為,圓的標準方程為,則又兩圓相離,則:,本題選擇D選項.點睛:判斷兩圓的位置關系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關系,一般不采用代數(shù)法6、A【解析】利用對數(shù)和指數(shù)互化,可得,,再利用即可求解.【詳解】由得:,,所以,故選:A7、C【解析】根據(jù)對數(shù)函數(shù)的單調性,結合二次根式的性質進行求解即可.【詳解】由,故選:C8、A【解析】球的直徑為長方體的體對角線,又體對角線的長度為,故體積為,選A.9、C【解析】∵l1∥l2,∴n=-4,l2方程可化為為x+2y-3=0.又由d=,解得m=2或-8(舍去),∴m+n=-2.點睛:兩平行線間距離公式是對兩平行線方程分別為,,則距離為,要注意兩直線方程中的系數(shù)要分別相等,否則不好應用此公式求距離10、B【解析】分析:化簡集合,根據(jù)補集的定義可得結果.詳解:由已知,,故選B.點睛:本題主要一元二次不等式的解法以及集合的補集運算,意在考查運算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】本題直接運算即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查指數(shù)冪的運算、對數(shù)的運算,是基礎題.12、【解析】由題;,又,代入得:考點:三角函數(shù)的公式變形能力及求值.13、8【解析】由圖象平移變換和指數(shù)函數(shù)的性質可得點A坐標,然后結合反函數(shù)的性質列方程組可解.【詳解】函數(shù)的圖象可以由的圖象向右平移2各單位長度,再向上平移3個單位長度得到,故點A坐標為,又的反函數(shù)過點,所以函數(shù)過點,所以,解得,所以.故答案為:814、(答案不唯一)【解析】直四棱柱,是在上底面的投影,當時,可得,當然底面ABCD滿足的條件也就能寫出來了.【詳解】根據(jù)直四棱柱可得:∥,且,所以四邊形是矩形,所以∥,同理可證:∥,當時,可得:,且底面,而底面,所以,而,從而平面,因為平面,所以,所以當滿足題意.故答案為:.15、【解析】根據(jù)函數(shù)的奇偶性和圖象變換,得到函數(shù)的圖象關于對稱,進而得出方程其中其中一個解為,另外四個解滿足,即可求解.【詳解】由題意,函數(shù)是偶函數(shù),可函數(shù)的圖象關于對稱,根據(jù)函數(shù)圖象的變換,可得函數(shù)的圖象關于對稱,又由方程有五個解,則其中一個解為,不妨設另外四個解分別為且,則滿足,即,所以這五個解之和為.故答案為:.16、【解析】原式考點:三角函數(shù)化簡與求值三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由已知利用誘導公式化簡得到的值,再利用誘導公式化簡為含有的形式,代入即可;(2)由根與系數(shù)的關系求出的值,結合的范圍求出,進一步求出,即可求的值【詳解】解:(1)由得:,即,,;(2),是關于的方程的兩個實根,,解得:,又,,,即,解得:,,.【點睛】關鍵點點睛:解答本題的關鍵是化弦為切.18、(1),(2)左,,,2,上,1【解析】(1)根據(jù)降冪公式、二倍角的正弦公式及兩角和的正弦公式化簡,由正弦型三角函數(shù)的周期公式求周期,由正弦型函數(shù)的單調性求單調區(qū)間;(2)根據(jù)三角函數(shù)的圖象變換過程求解即可.【小問1詳解】,∴函數(shù)的最小正周期.由,得:,,∴的單調遞減區(qū)間為,.【小問2詳解】將的圖象向左平移個單位,得到的圖象,在縱坐標不變的條件下再把所得曲線上各點的橫坐標變?yōu)樵瓉淼谋?,得到的圖象,再在橫坐標不變的條件下把所得曲線上各點的縱坐標變?yōu)樵瓉淼?倍,得到的圖象,最后再把所得曲線向上平移1個單位長度,即可得到函數(shù)的圖象.19、(1)見解析(2)見解析【解析】(1)欲證CD⊥平面A1ABB1,可先證平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,滿足根據(jù)面面垂直的性質;(2)欲證AC1∥平面CDB1,根據(jù)直線與平面平行的判定定理可知只需證AC1與平面CDB1內一直線平行,連接BC1,設BC1與B1C的交點為E,連接DE.根據(jù)中位線可知DE∥AC1,DE?平面CDB1,AC1?平面CDB1,滿足定理所需條件【詳解】(1)證明:∵ABC-A1B1C1是直三棱柱,∴平面ABC⊥平面A1ABB1∵AC=BC,點D是AB的中點,∴CD⊥AB,面ABC∩面A1ABB1=AB∴CD⊥平面A1ABB1(2)證明:連接BC1,設BC1與B1C的交點為E,連接DE∵D是AB的中點,E是BC1的中點,∴DE∥AC1.∵DE?平面CDB1,AC1?平面CDB1,∴AC1∥平面CDB1【點睛】本題考查直線與平面平行的判定,直線與平面垂直的判定,考查學生空間想象能力,邏輯思維能力,是中檔題20、(1)證明過程詳見解析(2)【解析】(1)先證明EF∥D1B,即證EF∥平面ABD1.(2)先證明∠D1BC是異面直線EF與BC所成的角(或所成角的補角),再解三角形求其正弦值.【詳解】(1)證明:連結BD1,在△DD1B中,E、F分別是D1D、DB的中點,∴EF是△DD1B的中位線,∴EF∥D1B,∵D1B?平面ABC1D1,EF平面ABD1,∴EF∥平面ABD1(2)∵AA1=,AB=2,EF∥BD1,∴∠D1BC是異面直線EF與BC所成的角(或所成角的補角),在直四棱柱ABCD-A1B1C1D1中,BC⊥平面CDD1C1,CD1?平面CDD1C1,∴BC⊥CD1.在Rt△D1C1C中,BC=2,CD1=,D1C⊥BC,∴sin∠D1BC=,【點睛】本題主要考查空間直線平面位置關系的證明和異面直線所成角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論