上海市三林中學(xué)2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第1頁
上海市三林中學(xué)2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第2頁
上海市三林中學(xué)2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第3頁
上海市三林中學(xué)2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第4頁
上海市三林中學(xué)2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市三林中學(xué)2026屆數(shù)學(xué)高二上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.曲線y=x3+11在點(diǎn)P(1,12)處的切線與y軸交點(diǎn)的縱坐標(biāo)是()A.﹣9 B.﹣3C.9 D.152.設(shè)是定義在R上的函數(shù),其導(dǎo)函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷3.下列命題正確的是()A經(jīng)過三點(diǎn)確定一個(gè)平面B.經(jīng)過一條直線和一個(gè)點(diǎn)確定一個(gè)平面C.四邊形確定一個(gè)平面D.兩兩相交且不共點(diǎn)的三條直線確定一個(gè)平面4.已知數(shù)列滿足:,,則()A. B.C. D.5.已知數(shù)列滿足:且,則此數(shù)列的前20項(xiàng)的和為()A.621 B.622C.1133 D.11346.19世紀(jì)法國著名數(shù)學(xué)家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學(xué),推動了空間幾何學(xué)的獨(dú)立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點(diǎn)位于一個(gè)與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術(shù)平方根.若圓與橢圓的蒙日圓有且僅有一個(gè)公共點(diǎn),則b的值為()A. B.C. D.7.已知直線:和直線:,拋物線上一動點(diǎn)P到直線和直線的距離之和的最小值是()A. B.C. D.8.“”是“直線與直線垂直”的A.充分必要條件 B.充分非必要條件C.必要不充分條件 D.既不充分也不必要條件9.對于實(shí)數(shù)a,b,c,下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則10.兩圓和的位置關(guān)系是()A.內(nèi)切 B.外離C.外切 D.相交11.若拋物線上的點(diǎn)到其焦點(diǎn)的距離是到軸距離的倍,則等于A. B.1C. D.212.已知x,y是實(shí)數(shù),且,則的最大值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,在直線上存在點(diǎn)P,使,則m的最大值是_______.14.已知橢圓和雙曲線有相同的焦點(diǎn)和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個(gè)公共點(diǎn),且(為坐標(biāo)原點(diǎn)).若,則的取值范圍是______15.已知?jiǎng)訄AP過定點(diǎn),且在定圓的內(nèi)部與其相內(nèi)切,則動圓P的圓心的軌跡方程為______16.函數(shù)在上的最大值為______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列的前n項(xiàng)和為,(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前n項(xiàng)和18.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過點(diǎn)作軸的平行線交軸于點(diǎn),過點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn)、,直線、與軸分別交于、兩點(diǎn),若,求直線的方程;(3)在第(2)問條件下,點(diǎn)是橢圓上的一個(gè)動點(diǎn),請問:當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對稱時(shí)的面積是否達(dá)到最大?并說明理由.19.(12分)已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)(1)求a的取值范圍;(2)設(shè)的兩個(gè)極值點(diǎn)分別為,證明:20.(12分)“既要金山銀山,又要綠水青山”.濱江風(fēng)景區(qū)在一個(gè)直徑為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)與圓弧上的一點(diǎn)(不同于A,B兩點(diǎn))之間設(shè)計(jì)為直線段小路,在直線段小路的兩側(cè)(注意是兩側(cè))種植綠化帶;再從點(diǎn)到點(diǎn)設(shè)計(jì)為沿弧的弧形小路,在弧形小路的內(nèi)側(cè)(注意是一側(cè))種植綠化帶(注:小路及綠化帶的寬度忽略不計(jì)).(1)設(shè)(弧度),將綠化帶總長度表示為的函數(shù);(2)試確定的值,使得綠化帶總長度最大.(弧度公式:,其中為弧所對的圓心角)21.(12分)某校高二年級共有男生490人和女生510人,現(xiàn)采用分層隨機(jī)抽樣的方法從該校高二年級中抽取100名學(xué)生,測得他們的身高數(shù)據(jù)(1)男生和女生應(yīng)各抽取多少人?(2)若樣本中男生和女生的平均身高分別為173.6、162.2厘米,請估計(jì)該校高二年級學(xué)生的平均身高22.(10分)如圖,在三棱柱中,平面ABC,,,,點(diǎn)D,E分別在棱和棱上,且,,M為棱中點(diǎn)(1)求證:;(2)求直線AB與平面所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點(diǎn)處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.2、A【解析】首先構(gòu)造函數(shù),再利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項(xiàng).【詳解】設(shè),,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A3、D【解析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【詳解】對于A,過不在一條直線上三點(diǎn)才能確定一個(gè)平面,故A不正確;對于B,經(jīng)過一條直線和直線外一個(gè)點(diǎn)確定一個(gè)平面,故B不正確;對于C,空間四邊形不能確定一個(gè)平面,故C不正確;對于D,兩兩相交且不共點(diǎn)的三條直線確定一個(gè)平面,故D正確.故選:D4、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項(xiàng),推導(dǎo)出數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A5、C【解析】這個(gè)數(shù)列的奇數(shù)項(xiàng)是公差為2的等差數(shù)列,偶數(shù)項(xiàng)是公比為2的等比數(shù)列,只要分開來計(jì)算即可.【詳解】由于,所以當(dāng)n為奇數(shù)時(shí),是等差數(shù)列,即:共10項(xiàng),和為;,共10項(xiàng),其和為;∴該數(shù)列前20項(xiàng)的和;故選:C.6、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個(gè)交點(diǎn)可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因?yàn)閳A與橢圓的蒙日圓有且僅有一個(gè)公共點(diǎn),所以兩圓相切,所以,解得,故選:B7、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點(diǎn)P到直線和直線的距離之和,當(dāng)B,P,F(xiàn)三點(diǎn)共線時(shí),最小,再結(jié)合點(diǎn)到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準(zhǔn)線為,焦點(diǎn)為,∴點(diǎn)P到準(zhǔn)線的距離PA等于點(diǎn)P到焦點(diǎn)F的距離PF,即,∴點(diǎn)P到直線和直線的距離之和,∴當(dāng)B,P,F(xiàn)三點(diǎn)共線時(shí),最小,∵,∴,∴點(diǎn)P到直線和直線的距離之和的最小值為故選:A8、B【解析】先由兩直線垂直求出的值,再由充分條件與必要條件的概念,即可得出結(jié)果.【詳解】因?yàn)橹本€與直線垂直,則,即,解得或;因此由“”能推出“直線與直線垂直”,反之不能推出,所以“”是“直線與直線垂直”的充分非必要條件.故選B【點(diǎn)睛】本題主要考查命題充分不必要條件的判定,熟記充分條件與必要條件的概念,以及兩直線垂直的判定條件即可,屬于常考題型.9、D【解析】判斷不等式的真假,就是要考慮在不等式的變形過程中是否遵守不等式變形的規(guī)則.【詳解】若,令,,,,,故A錯(cuò)誤;若,令c=0,則,故B錯(cuò)誤;若,令a=-1,b=-2,,,故C錯(cuò)誤;∵,故,根據(jù)不等式運(yùn)算規(guī)則,在不等式的兩邊同時(shí)乘以或除以一個(gè)正數(shù),不等式的方向不變,故D正確.故選:D.10、A【解析】計(jì)算出圓心距,利用幾何法可判斷兩圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為,圓的圓心坐標(biāo)為,半徑為,兩圓圓心距為,則,因此,兩圓和內(nèi)切.故選:A.11、D【解析】根據(jù)拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點(diǎn)睛】本題主要考查了拋物線的定義和性質(zhì).考查了考生對拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題12、D【解析】將方程化為圓的標(biāo)準(zhǔn)方程,則的幾何意義是圓上一點(diǎn)與點(diǎn)連線的斜率,進(jìn)而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點(diǎn)與點(diǎn)A連線的斜率,設(shè),即,當(dāng)此直線與圓相切時(shí),斜率最大或最小,當(dāng)切線位于切線AB時(shí)斜率最大.此時(shí),,,所以的最大值為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】設(shè)P點(diǎn)坐標(biāo),根據(jù)條件知,由向量的坐標(biāo)運(yùn)算可得P點(diǎn)位于圓上,再根據(jù)P存在于直線上,可知直線和圓有交點(diǎn),因此列出相應(yīng)的不等式,求得m范圍,可得m的最大值.【詳解】設(shè)P(x,y),則,由題意可知,所以,即,即滿足條件的點(diǎn)P在圓上,又根據(jù)題意P點(diǎn)存在于直線上,則直線與圓有交點(diǎn),故有圓心(1,0)到直線的距離小于等于圓的半徑,即,解得,則m的最大值為11,故答案為:11.14、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實(shí)半軸長,由可得為直角三角形,由此建立關(guān)系即可計(jì)算作答,【詳解】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點(diǎn)和在x軸上,點(diǎn)P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點(diǎn),因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點(diǎn)睛】方法點(diǎn)睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.15、【解析】設(shè)切點(diǎn)為,根據(jù)題意,列出點(diǎn)滿足的關(guān)系式即.則點(diǎn)的軌跡是橢圓,然后根據(jù)橢圓的標(biāo)準(zhǔn)方程求點(diǎn)的軌跡方程【詳解】設(shè)動圓和定圓內(nèi)切于點(diǎn),動點(diǎn)到定點(diǎn)和定圓圓心距離之和恰好等于定圓半徑,即,點(diǎn)的軌跡是以,為兩焦點(diǎn),長軸長為10的橢圓,,點(diǎn)的軌跡方程為,故答案:16、【解析】對原函數(shù)求導(dǎo)得,令,解得或,且所以原函數(shù)在上的最大值為考點(diǎn):1.函數(shù)求導(dǎo);2.利用導(dǎo)函數(shù)求最值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合“當(dāng)時(shí),”計(jì)算作答.(2)由(1)求出,利用裂項(xiàng)相消法計(jì)算得解.【小問1詳解】數(shù)列的前n項(xiàng)和為,,當(dāng)時(shí),,當(dāng)時(shí),,滿足上式,則,所以數(shù)列的通項(xiàng)公式是【小問2詳解】由(1)知,,所以,所以數(shù)列的前n項(xiàng)和18、(1);(2);(3)當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對稱時(shí),的面積達(dá)到最大,理由見解析.【解析】(1)設(shè),可得出,,將點(diǎn)的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得,結(jié)合韋達(dá)定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點(diǎn)為直線與橢圓的切點(diǎn)時(shí),的面積達(dá)到最大,求出直線與橢圓的切點(diǎn)坐標(biāo),可得出結(jié)論.【小問1詳解】解:因?yàn)椋O(shè),則,,所以,橢圓的方程可表示為,將點(diǎn)的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設(shè)線段的中點(diǎn)為,因?yàn)?,則軸,故直線、的傾斜角互補(bǔ),易知點(diǎn),若直線軸,則、為橢圓短軸的兩個(gè)頂點(diǎn),不妨設(shè)點(diǎn)、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,,由韋達(dá)定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當(dāng)點(diǎn)為直線與橢圓的切點(diǎn)時(shí),此時(shí)的面積取最大值,當(dāng)時(shí),方程(*)為,解得,此時(shí),即點(diǎn).此時(shí),點(diǎn)與點(diǎn)關(guān)于軸對稱,因此,當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對稱時(shí),的面積達(dá)到最大.【點(diǎn)睛】方法點(diǎn)睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值19、(1);(2)證明見解析.【解析】(1)對函數(shù)求導(dǎo),把問題轉(zhuǎn)化為導(dǎo)函數(shù)值為0的方程有兩個(gè)正根,再構(gòu)造函數(shù)求解作答.(2)將所證不等式等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),利用導(dǎo)數(shù)探討其單調(diào)性作答.【小問1詳解】函數(shù)的定義域?yàn)?,求?dǎo)得:,依題意,函數(shù)在上有兩個(gè)不同極值點(diǎn),于是得有兩個(gè)不等的正根,令,,則,當(dāng)時(shí),,當(dāng)時(shí),,于是得在上單調(diào)遞增,在上單調(diào)遞減,,因,恒成立,即當(dāng)時(shí),的值從遞減到0(不能取0),又,有兩個(gè)不等的正根等價(jià)于直線與函數(shù)的圖象有兩個(gè)不同的公共點(diǎn),如圖,因此有,所以a取值范圍是.【小問2詳解】由(1)知分別是方程的兩個(gè)不等的正根,,即,作差得,則有,原不等式,令,則,于是得,設(shè),則,因此,在單調(diào)遞增,則有,即成立,所以.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:涉及不等式恒成立問題,將給定不等式等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.20、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長公式求出弧的長度,則可得函數(shù);(2)利用導(dǎo)數(shù)可求得結(jié)果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長為(2)由(1)可知,令得,因?yàn)樗裕?dāng)單調(diào)遞增,當(dāng)單調(diào)遞減,所以當(dāng)時(shí),使得綠化帶總長度最大.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:仔細(xì)審題,注意題目中的關(guān)鍵詞“兩側(cè)”和“一側(cè)”是解題關(guān)鍵.21、(1)應(yīng)抽取男生49人,女生51人;(2).【解析】(1)利用分層抽樣計(jì)算男生和女生應(yīng)抽取的人數(shù);(2)利用平均數(shù)的計(jì)算公式計(jì)算求解.【小問1詳解】解:應(yīng)抽取男生人,女生應(yīng)抽取100-49=51

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論