版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆河北省行唐啟明中學(xué)高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“函數(shù)在上無(wú)極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點(diǎn),且其“歐拉線”與圓相切,則:①.圓M上的點(diǎn)到原點(diǎn)的最大距離為②.圓M上存在三個(gè)點(diǎn)到直線的距離為③.若點(diǎn)在圓M上,則的最小值是④.若圓M與圓有公共點(diǎn),則上述結(jié)論中正確的有()個(gè)A.1 B.2C.3 D.43.設(shè)實(shí)系數(shù)一元二次方程在復(fù)數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設(shè)實(shí)系數(shù)一元三次方程在復(fù)數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.44.若數(shù)列的通項(xiàng)公式為,則該數(shù)列的第5項(xiàng)為()A. B.C. D.5.已知,,且,則向量與的夾角為()A. B.C. D.6.點(diǎn)A是曲線上任意一點(diǎn),則點(diǎn)A到直線的最小距離為()A. B.C. D.7.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-18.雙曲線與橢圓的焦點(diǎn)相同,則等于()A.1 B.C.1或 D.29.為比較甲、乙兩地某月時(shí)的氣溫狀況,隨機(jī)選取該月中的天,將這天中時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖(十位數(shù)字為莖,個(gè)位數(shù)字為葉).考慮以下結(jié)論:①甲地該月時(shí)的平均氣溫低于乙地該月時(shí)的平均氣溫;②甲地該月時(shí)的平均氣溫高于乙地該月時(shí)的平均氣溫;③甲地該月時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月時(shí)的氣溫的標(biāo)準(zhǔn)差;④甲地該月時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月時(shí)的氣溫的標(biāo)準(zhǔn)差.其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為()A.①③ B.①④C.②③ D.②④10.命題:“?x<1,x2<1”的否定是()A.?x≥1,x2<1 B.?x≥1,x2≥1C.?x<1,x2≥1 D.?x<1,x2≥111.已知實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或12.設(shè)是等差數(shù)列的前項(xiàng)和,已知,,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩平行直線與間的距離為3,則C的值是________.14.已知向量,,,則___________.15.展開(kāi)式中的系數(shù)是___________.16.直線與直線的夾角大小等于_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),,求a的取值范圍.18.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點(diǎn),為橢圓上一點(diǎn),的周長(zhǎng)為.(1)求橢圓的方程;(2)為圓上任意一點(diǎn),過(guò)作橢圓的兩條切線,切點(diǎn)分別為A,B,判斷是否為定值?若是,求出定值:若不是,說(shuō)明理由,19.(12分)已知直線l:x-y+2=0,一個(gè)圓的圓心C在x軸正半軸上,且該圓與直線l和y軸均相切(1)求該圓的方程;(2)若直線x+my-1=0與圓C交于A、B兩點(diǎn),且|AB|=,求m的值20.(12分)在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線(1)求曲線的方程;(2)設(shè)直線與交于兩點(diǎn),為何值時(shí)?21.(12分)設(shè)數(shù)列的前n項(xiàng)和為,且滿足.(1)證明為等比數(shù)列,并求數(shù)列通項(xiàng)公式;(2)在(1)的條件下,設(shè),求數(shù)列的前項(xiàng)和.22.(10分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設(shè)為上一點(diǎn),滿足,若直線與平面所成的角為,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)極值的概念,可知函數(shù)在上無(wú)極值,則方程的,再根據(jù)充分、必要條件判斷,即可得到結(jié)果.【詳解】由題意,可得,若函數(shù)在上無(wú)極值,所以對(duì)于方程,,解得.所以“”是“函數(shù)在上無(wú)極值”的必要不充分條件.故選:B.2、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點(diǎn)的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點(diǎn)與定點(diǎn)連線的斜率判斷C;由兩個(gè)圓有公共點(diǎn)可得圓心距與兩個(gè)半徑之間的關(guān)系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點(diǎn)坐標(biāo)為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點(diǎn)的距離為,則圓上的點(diǎn)到原點(diǎn)的最大距離為,故①錯(cuò)誤;圓心到直線的距離為,圓上存在三個(gè)點(diǎn)到直線的距離為,故②正確;的幾何意義:圓上的點(diǎn)與定點(diǎn)連線的斜率,設(shè)過(guò)與圓相切的直線方程為,即,由,解得,的最小值是,故③錯(cuò)誤;的圓心坐標(biāo),半徑為,圓的的圓心坐標(biāo)為,半徑為,要使圓與圓有公共點(diǎn),則圓心距的范圍為,,,解得,故④錯(cuò)誤故選:A3、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對(duì)應(yīng)系數(shù)相等得:,.故選:A.【點(diǎn)睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.4、C【解析】直接根據(jù)通項(xiàng)公式,求;【詳解】,故選:C5、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.6、A【解析】動(dòng)點(diǎn)在曲線,則找出曲線上某點(diǎn)的斜率與直線的斜率相等的點(diǎn)為距離最小的點(diǎn),利用導(dǎo)數(shù)的幾何意義即可【詳解】不妨設(shè),定義域?yàn)椋簩?duì)求導(dǎo)可得:令解得:(其中舍去)當(dāng)時(shí),,則此時(shí)該點(diǎn)到直線的距離為最小根據(jù)點(diǎn)到直線的距離公式可得:解得:故選:A7、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項(xiàng),以1為公差的等差數(shù)列,∴,即,∴當(dāng)時(shí),,當(dāng)時(shí),也適合上式,所以故選:A.8、A【解析】根據(jù)雙曲線方程形式確定焦點(diǎn)位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因?yàn)殡p曲線的焦點(diǎn)在軸上,所以橢圓焦點(diǎn)在軸上,依題意得解得.故選:A9、B【解析】根據(jù)莖葉圖數(shù)據(jù)求出平均數(shù)及標(biāo)準(zhǔn)差即可【詳解】由莖葉圖知甲地該月時(shí)的平均氣溫為,標(biāo)準(zhǔn)差為由莖葉圖知乙地該月時(shí)的平均氣溫為,標(biāo)準(zhǔn)差為則甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫,故①正確,乙平均氣溫的標(biāo)準(zhǔn)差小于甲的標(biāo)準(zhǔn)差,故④正確,故正確的是①④,故選:B10、C【解析】將特稱命題否定為全稱命題即可【詳解】根據(jù)含有量詞的命題的否定,則“?x<1,x2<1”的否定是“?x<1,x2≥1”.故選:C.11、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計(jì)算公式即可求得結(jié)果.【詳解】因?yàn)閷?shí)數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時(shí),表示焦點(diǎn)在軸上的橢圓,此時(shí);當(dāng)時(shí),表示焦點(diǎn)在軸上的雙曲線,此時(shí).故選:C.12、C【解析】依題意有,解得,所以.考點(diǎn):等差數(shù)列的基本概念.【易錯(cuò)點(diǎn)晴】本題主要考查等差數(shù)列的基本概念.在解有關(guān)等差數(shù)列的問(wèn)題時(shí)可以考慮化歸為和等基本量,通過(guò)建立方程(組)獲得解.即等差數(shù)列的通項(xiàng)公式及前項(xiàng)和公式,共涉及五個(gè)量,知其中三個(gè)就能求另外兩個(gè),即知三求二,多利用方程組的思想,體現(xiàn)了用方程的思想解決問(wèn)題,注意要弄準(zhǔn)它們的值.運(yùn)用方程的思想解等差數(shù)列是常見(jiàn)題型,解決此類問(wèn)題需要抓住基本量、,掌握好設(shè)未知數(shù)、列出方程、解方程三個(gè)環(huán)節(jié),常通過(guò)“設(shè)而不求,整體代入”來(lái)簡(jiǎn)化運(yùn)算二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)兩條平行直線之間的距離公式即可得解.【詳解】?jī)善叫兄本€與間的距離為3,所以,所以故答案為:14、2【解析】由空間向量數(shù)量積的坐標(biāo)運(yùn)算可得答案.【詳解】因?yàn)?,,,所以?故答案為:2.15、【解析】根據(jù)二項(xiàng)展開(kāi)式的通項(xiàng)公式,可知展開(kāi)式中含的項(xiàng),以及展開(kāi)式中含的項(xiàng),再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開(kāi)式中含的項(xiàng)為,而展開(kāi)式中含的項(xiàng)為,所以的系數(shù)為.故答案為:.16、##【解析】根據(jù)直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)極大值,沒(méi)有極小值(2)【解析】(1)把代入,然后對(duì)函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可求函數(shù)單調(diào)區(qū)間,即可得解;(2)構(gòu)造函數(shù),將不等式的恒成立轉(zhuǎn)化為函數(shù)的最值問(wèn)題,結(jié)合導(dǎo)數(shù)與單調(diào)性及函數(shù)的性質(zhì)對(duì)進(jìn)行分類討論,其中當(dāng)和時(shí)易判斷函數(shù)的單調(diào)性以及最小值,而當(dāng)時(shí),的最小值與0進(jìn)一步判斷【小問(wèn)1詳解】當(dāng)時(shí),的定義域?yàn)椋?當(dāng)時(shí),,當(dāng)時(shí),,所以在上為增函數(shù),在上為減函數(shù).故有極大值,沒(méi)有極小值.【小問(wèn)2詳解】當(dāng)時(shí),恒成立等價(jià)于對(duì)于任意恒成立.令,則.若,則,所以在上單調(diào)遞減,所以,符合題意.若,所以在上單調(diào)遞減,,符合題意.若,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,不合題意.綜上可知,a的取值范圍為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查了不等式恒成立問(wèn)題,其關(guān)鍵是構(gòu)造函數(shù),通過(guò)討論參數(shù)在不同取值范圍時(shí)函數(shù)的單調(diào)性,求出函數(shù)的最值,解出參數(shù)的范圍.必要時(shí)二次求導(dǎo).18、(1)(2)是;【解析】(1)由離心率和焦點(diǎn)三角形周長(zhǎng)可求出,結(jié)合關(guān)系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當(dāng)平行于軸時(shí),設(shè)過(guò)的直線為,聯(lián)立橢圓方程,令化簡(jiǎn)得關(guān)于的二次方程,由韋達(dá)定理即可求解.【小問(wèn)1詳解】由題可知,,解得,又,解得,故橢圓的標(biāo)準(zhǔn)方程為:;【小問(wèn)2詳解】如圖所示,當(dāng)平行于軸時(shí),恰好平行于軸,,,;當(dāng)不平行于軸時(shí),設(shè),設(shè)過(guò)點(diǎn)的直線為,聯(lián)立得,令得,化簡(jiǎn)得,設(shè),則,又,故,即.綜上所述,.19、(1)(2)0【解析】(1)設(shè)出圓心坐標(biāo),利用題干條件得到方程,求出,從而求出該圓的方程;(2)利用點(diǎn)到直線距離公式及垂徑定理進(jìn)行求解.【小問(wèn)1詳解】設(shè)圓心為,,則由題意得:,解得:或(舍去),故該圓的方程為【小問(wèn)2詳解】圓心到直線的距離為,由垂徑定理得:,解得:20、(1);(2).【解析】(1)由題意可得:點(diǎn)的軌跡為橢圓,設(shè)標(biāo)準(zhǔn)方程為:,則,,,解出可得橢圓的標(biāo)準(zhǔn)方程(2)設(shè),,直線方程與橢圓聯(lián)立,化為:,恒成立,由,可得,把根與系數(shù)的關(guān)系代入解得【詳解】解:(1)由題意可得:點(diǎn)的軌跡為橢圓,設(shè)標(biāo)準(zhǔn)方程為:,則,,,可得橢圓的標(biāo)準(zhǔn)方程為:(2)設(shè),,聯(lián)立,化為:,恒成立,,,,,,解得.滿足當(dāng)時(shí),能使【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長(zhǎng)問(wèn)題、數(shù)量積運(yùn)算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題21、(1)證明見(jiàn)解析,;(2).【解析】(1)利用與的關(guān)系求數(shù)列的遞推關(guān)系,即得證明結(jié)論,并根據(jù)等比數(shù)列求通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果求出,再分和,求.【詳解】(1)當(dāng)時(shí),,,當(dāng)時(shí),,與已知式作差得,即,又,∴,∴,故數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,所以(2)由(1)知,∴,若,,若,,∴.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是第二問(wèn)弄清楚數(shù)列與的前項(xiàng)和的關(guān)系,在分段求數(shù)列的前項(xiàng)和.22、(1)證明見(jiàn)解析;(2).【解析】(1)由三角形的邊角關(guān)系可證,再由底面,可得.即可證明底面,由面面垂直的判定定
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年7月國(guó)開(kāi)電大行管專科《社會(huì)調(diào)查研究與方法》期末紙質(zhì)考試試題及答案
- 論考試試題及答案
- 電子商務(wù)期末考試題及答案sem
- 網(wǎng)店經(jīng)營(yíng)與管理沈欽課后習(xí)題答案
- 《寫給中學(xué)生的心理學(xué)》閱讀測(cè)試題及參考答案
- 醫(yī)學(xué)臨床三基醫(yī)師考試題庫(kù)及答案詳解
- 沈陽(yáng)校招面試題庫(kù)及答案
- 食品藥品安全普法試題及答案
- 二建考試簡(jiǎn)答題及答案
- 建設(shè)法規(guī)機(jī)考試題及答案
- 供應(yīng)商管理績(jī)效綜合評(píng)價(jià)表
- 危重病人的院前急救課件
- 警用偵查無(wú)人機(jī)偵查技術(shù)在反偷獵中的應(yīng)用分析報(bào)告
- 礦井突水機(jī)理研究-洞察及研究
- 2025-2026秋“1530”安全教育記錄表
- 骨密度檢測(cè)的臨床意義
- 鉆探原始班報(bào)表試行版
- 腸菌移植治療炎癥性腸病專家共識(shí)(2025)解讀
- T/CPPC 1032-2021建筑生產(chǎn)資源分供商評(píng)價(jià)規(guī)范
- 機(jī)耕合同協(xié)議書范本簡(jiǎn)單
- 送車免責(zé)合同協(xié)議書模板
評(píng)論
0/150
提交評(píng)論