山東省平度市九中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第1頁
山東省平度市九中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第2頁
山東省平度市九中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第3頁
山東省平度市九中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第4頁
山東省平度市九中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省平度市九中2026屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在棱長為2的正方體中,是棱上一動點(diǎn),點(diǎn)是面的中心,則的值為()A.4 B.C.2 D.不確定2.(2017新課標(biāo)全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.3.下列通項公式中,對應(yīng)數(shù)列是遞增數(shù)列的是()A B.C. D.4.已知圓,若存在過點(diǎn)的直線與圓C相交于不同兩點(diǎn)A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.5.已知橢圓的左、右焦點(diǎn)分別為,,焦距為,過點(diǎn)作軸的垂線與橢圓相交,其中一個交點(diǎn)為點(diǎn)(如圖所示),若的面積為,則橢圓的方程為()A B.C. D.6.已知橢圓與雙曲線有相同的焦點(diǎn),則的值為A. B.C. D.7.已知圓上有三個點(diǎn)到直線的距離等于1,則的值為()A. B.C. D.18.已知定義在R上的函數(shù)滿足,且有,則的解集為()A B.C. D.9.設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)F且垂直于x軸的直線與拋物線C交于A,B兩點(diǎn),若,則()A1 B.2C.4 D.810.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.11.已知E、F分別為橢圓的左、右焦點(diǎn),傾斜角為的直線l過點(diǎn)E,且與橢圓交于A,B兩點(diǎn),則的周長為A.10 B.12C.16 D.2012.設(shè)函數(shù),若的整數(shù)有且僅有兩個,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.與雙曲線有共同的漸近線,并且經(jīng)過點(diǎn)的雙曲線方程是______14.曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形面積為__________.15.某校開展“讀書月”朗誦比賽,9位評委為選手A給出的分?jǐn)?shù)如右邊莖葉圖所示.記分員在去掉一個最高分和一個最低分后算得平均分為91,復(fù)核員在復(fù)核時發(fā)現(xiàn)有一個數(shù)字(莖葉圖中的x)無法看清,若記分員計算無誤,則數(shù)字x應(yīng)該是___________.選手A87899924x1516.若點(diǎn)到點(diǎn)的距離比它到定直線的距離小1,則點(diǎn)滿足的方程為_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,側(cè)面是邊長為4的正三角形,且與底面垂直,底面是菱形,且,為的中點(diǎn)(1)求證:;(2)求點(diǎn)到平面的距離18.(12分)在平面直角坐標(biāo)系中,動點(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離.(1)求動點(diǎn)的軌跡方程;(2)記動點(diǎn)的軌跡為曲線,過點(diǎn)的直線與曲線交于兩點(diǎn),在軸上是否存在一點(diǎn),使若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.19.(12分)已知A(-3,0),B(3,0),四邊形AMBN的對角線交于點(diǎn)D(1,0),kMA與kMB的等比中項為,直線AM,NB相交于點(diǎn)P.(1)求點(diǎn)M的軌跡C的方程;(2)若點(diǎn)N也在C上,點(diǎn)P是否在定直線上?如果是,求出該直線,如果不是,請說明理由.20.(12分)已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式及前項的和.21.(12分)已知拋物線:()的焦點(diǎn)為,點(diǎn)在上,點(diǎn)在的內(nèi)側(cè),且的最小值為(1)求的方程;(2)過點(diǎn)的直線與拋物線交于不同的兩點(diǎn),,直線,(為坐標(biāo)原點(diǎn))分別交直線于點(diǎn),記直線,,的斜率分別為,,,若,求的值22.(10分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束,設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結(jié)束的概率;(2)求甲獲勝的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】畫出圖形,建立空間直角坐標(biāo)系,用向量法求解即可【詳解】如圖,以為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,因為正方體棱長為2,點(diǎn)是面的中心,是棱上一動點(diǎn),所以,,,故選:A2、B【解析】繪制圓柱的軸截面如圖所示,由題意可得:,結(jié)合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.3、C【解析】根據(jù)數(shù)列單調(diào)性的定義逐項判斷即可.【詳解】對于A,B選項對應(yīng)數(shù)列是遞減數(shù)列.對于C選項,,故數(shù)列是遞增數(shù)列.對于D選項,由于.所以數(shù)列不是遞增數(shù)列故選:C.4、D【解析】根據(jù)圓的割線定理,結(jié)合圓的性質(zhì)進(jìn)行求解即可.【詳解】圓的圓心坐標(biāo)為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D5、A【解析】由題意可得,令,可得,再由三角形的面積公式,解方程可得,,即可得到所求橢圓的方程【詳解】由題意可得,即,即有,令,則,可得,則,即,解得,,∴橢圓的方程為故選:A6、C【解析】根據(jù)題意可知,結(jié)合的條件,可知,故選C考點(diǎn):橢圓和雙曲線性質(zhì)7、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點(diǎn)到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.8、A【解析】構(gòu)造,應(yīng)用導(dǎo)數(shù)及已知條件判斷的單調(diào)性,而題設(shè)不等式等價于即可得解.【詳解】設(shè),則,∴在R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A9、C【解析】根據(jù)焦點(diǎn)弦的性質(zhì)即可求出【詳解】依題可知,,所以故選:C10、B【解析】根據(jù)雙曲線的離心率,求出即可得到結(jié)論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B11、D【解析】利用橢圓的定義即可得到結(jié)果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點(diǎn)睛】本題考查橢圓簡單性質(zhì)的應(yīng)用,橢圓的定義的應(yīng)用,三角形的周長的求法,屬于基本知識的考查12、D【解析】等價于,令,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,作出的簡圖,數(shù)形結(jié)合只需滿足即可.【詳解】,即,又,則.令,,,當(dāng)時,,時,,時,,在單調(diào)遞減,在單調(diào)遞增,且,且,,作出函數(shù)圖象如圖所示,若的整數(shù)有且僅有兩個,即只需滿足,即,解得:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)雙曲線的方程為,將點(diǎn)代入方程可求的值,從而可得結(jié)果【詳解】設(shè)與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經(jīng)過點(diǎn),所求的雙曲線方程為:,整理得故答案為【點(diǎn)睛】本題考查雙曲線的方程與簡單性質(zhì),意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設(shè)為,只需根據(jù)已知條件求出即可.14、【解析】運(yùn)用導(dǎo)數(shù)的幾何意義進(jìn)行求解即可.【詳解】由,所以,而,所以切線方程為:,令,得,令,得,所以三角形的面積為:,故答案為:15、4【解析】根據(jù)題意分和兩種情況討論,再根據(jù)平均分公式計算即可得出答案.【詳解】解:當(dāng)時,則去掉的最低分?jǐn)?shù)為87分,最高分?jǐn)?shù)為95分,則,所以,當(dāng)時,則去掉的最低分?jǐn)?shù)為87分,最高分?jǐn)?shù)為分,則平均分為,與題意矛盾,綜上.故答案為:4.16、【解析】根據(jù)拋物線的定義可得動點(diǎn)的軌跡方程【詳解】點(diǎn)到點(diǎn)的距離比它到直線的距離少1,所以點(diǎn)到點(diǎn)的距離與到直線的距離相等,所以其軌跡為拋物線,焦點(diǎn)為,準(zhǔn)線為,所以方程為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取的中點(diǎn),連接,,,先證明平面,再由平面得,(2)等體積法求解.根據(jù)題目條件,先證明為三棱錐的高,再求出以為頂點(diǎn),為底面的三棱錐的體積和以為頂點(diǎn),為底面的三棱錐的體積,根據(jù),求點(diǎn)到平面的距離.【詳解】(1)證明:如圖,取的中點(diǎn),連接,,依題意可知,,均為正三角形,∴,又∵,∴平面又平面,∴(2)由(1)可知,∵平面平面,平面平面,平面,∴平面,即為三棱錐的高由題意得,∵為的中點(diǎn),∴在中,,∴,,∴在中,邊上的高,∴的面積的面積點(diǎn)到平面的距離即點(diǎn)到平面的距離設(shè)點(diǎn)到平面的距離為,由,得,即,解得,即點(diǎn)到平面的距離為18、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設(shè)直線的方程為,利用韋達(dá)定理法結(jié)合條件可得,即得.【小問1詳解】因為動點(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離,所以動點(diǎn)到點(diǎn)的距離和它到直線的距離相等,所以點(diǎn)的軌跡是以為焦點(diǎn),以直線為準(zhǔn)線的拋物線,設(shè)拋物線方程為,由,得,所以動點(diǎn)的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設(shè)直線的方程為,.聯(lián)立,得,恒成立,由韋達(dá)定理,得,,假設(shè)存在一點(diǎn),滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點(diǎn),滿足,點(diǎn)的坐標(biāo)為.19、(1);(2)點(diǎn)P在定直線x=9上.理由見解析.【解析】(1)設(shè)點(diǎn),根據(jù)兩點(diǎn)坐標(biāo)距離公式和等比數(shù)列的等比中項的應(yīng)用列出方程,整理方程即可;(2)設(shè)直線MN方程為:,點(diǎn),聯(lián)立雙曲線方程消去x得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理寫出,利用兩點(diǎn)坐標(biāo)和直線的點(diǎn)斜式方程寫出直線PA、PB,聯(lián)立方程組,解方程組即可.【小問1詳解】設(shè)點(diǎn),則,又,所以,整理,得,即軌跡M的方程C為:;【小問2詳解】點(diǎn)P在定直線上.由(1)知,曲線C方程為:,直線MN過點(diǎn)D(1,0)若直線MN斜率不存在,則,得,不符合題意;設(shè)直線MN方程為:,點(diǎn),則,消去x,得,有,,,,所以直線PA方程為:,直線PB方程為:,所以點(diǎn)P的坐標(biāo)為方程組的解,有,即,整理,得,解得,即點(diǎn)P在定直線上.20、(1)證明見解析;(2),.【解析】(1)證明出,即可證得結(jié)論成立;(2)由(1)的結(jié)論并確定數(shù)列的首項和公比,可求得數(shù)列的通項公式,再利用分組求和法可求得.【小問1詳解】證明:因為數(shù)列滿足,,則,且,則,,,以此類推可知,對任意的,,所以,,故數(shù)列為等比數(shù)列.【小問2詳解】解:由(1)可知,數(shù)列是首項為,公比為的等比數(shù)列,則,所以,,因此,.21、(1)(2)【解析】(1)先求出拋物線的準(zhǔn)線,作于由拋物線的定義,可得,從而當(dāng)且僅當(dāng),,三點(diǎn)共線時取得最小,得出答案.(2)設(shè),,設(shè):與拋物線方程聯(lián)立,得出韋達(dá)定理,設(shè)出直線的方程分別與直線的方程聯(lián)立得出點(diǎn)的坐標(biāo),進(jìn)一步得到,的表達(dá)式,由條件可得答案.【小問1詳解】的準(zhǔn)線為:,作于,則,所以,因為點(diǎn)在的內(nèi)側(cè),所以當(dāng)且僅當(dāng),,三點(diǎn)共線時取得最小值,所以,解得,所以的方程為【小問2詳解】由題意可知的斜率一定存在,且不為0,設(shè):(),聯(lián)立消去得,由,即,得,結(jié)合,知記,,則直線的方程為由得易知,所以同理可得由,可得,即,化簡得,結(jié)合,解得22、(1)(2)【解析】(1)設(shè)事件“甲在第次投籃投中”,設(shè)事件“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論