版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Incollaborationwith
〉
BIGIDEAS
RESEARCHREPORT
MITsloan
ManagementReview
November2025
TheEmerging
AgenticEnterprise:HowLeaders
MustNavigateaNewAgeofAI
bySamRansbotham,DavidKiron,ShervinKhodabandeh,SeshIyer,andAmartyaDas
AUTHORS
SamRansbotham
isaprofessorofanalyticsattheCarrollSchoolofManagementatBostonCollege,aswellasguesteditorforMITSloanManagementReviewsArtificialIntelligenceandBusinessStrategyBigIdeasinitiative.
DavidKironistheeditorialdirector,research,ofMITSloanManagementReviewandprogramleadforitsBigIdeasresearchinitiatives.
ShervinKhodabandehisamanagingdirectorandseniorpartneratBostonConsultingGroup(BCG)andthecoleaderofitsAIbusiness
inNorthAmerica.HeisaleaderinBCGX
andhasover20yearsofexperiencedriving
businessimpactfromAIanddigital.Hecanbecontactedat
shervin@
.
SeshIyerisamanagingdirectorandsenior
partneratBCGandtheNorthAmericachairforBCGX,wherehehelpsclientsdrive
large-scaleAItransformations.Heisthe
globalleaderfortheAI&TechLabattheBCGHendersonInstituteandcanbereachedat
sesh@
.
AmartyaDasisaprincipalatBCGand
currentlyservesasanambassadorattheBCGHendersonInstitute,whereheleadsresearchontheimpactoftechnologyandAIonsociety,focusingonhowemergingtechnologiesreshapebothcompaniesandpublicinstitutions.Hecanbereachedat
das.amartya@
.
CONTRIBUTORS
ToddFitz,KevinFoley,SarahJohnson,MattLangione,MicheleLeeDeFilippo,AmandaLuther,JenniferMartin,SamanthaOldroyd,MeenalPore,AllisonRyder,TaylorZhang,LeilaZhu,
LeonidZhukov,DavidZuluagaMartínez
TheresearchandanalysisforthisreportwasconductedunderthedirectionoftheauthorsaspartofanMITSloanManagementReviewresearchinitiativeincollaborationwithandsponsoredby
BostonConsultingGroup.
Tocitethisreport,pleaseuse:
S.Ransbotham,D.Kiron,S.Khodabandeh,S.Iyer,andA.Das,“TheEmergingAgenticEnterprise:HowLeadersMustNavigateaNewAgeofAI,”MITSloanManagementReviewandBoston
ConsultingGroup,November2025.
SUPPORTINGSPONSORS
BCG
HENDERSONINSTITUTE
BCG》《
/10.63383/jAXE2583
Copyright?MassachusettsInstituteofTechnology,2025.Allrightsreserved.REPRINT#:67270
CONTENTS
1
Introduction
4
StrategicTensionsWhenAdoptingAgenticAI
1
1
AStrategicOverhaulofWorkflows,Governance,
Roles,andInvestment
17
Conclusion
18
Appendix
Introduction
Executiveshavelongreliedonsimplecategoriestoframehowtechnologyfitsintoorganizations:Toolsautomatetasks,peoplemakedecisions,andstrategydetermineshowthetwoworktogether.Thatframingisnolongersufficient.Anewclassofsys-tems—agenticAI—complicatestheseboundaries.Thesesystemscanplan,act,andlearnontheirown.Theyarenotjusttoolstobeoperatedorassistantswaitingforinstructions.Increasingly,theybehavelikeautonomousteammates,capableofexe-cutingmultistepprocessesandadaptingastheygo.Notably,76%ofrespondentstoourglobalexecutivesurveysaytheyviewagenticAIasmorelikeacoworkerthanatool.
Forstrategists,agenticAI’sdualnatureasbothatoolandcoworkercreatesnewdilemmas.Asingleagentmighttakeoveraroutinestep,supportahumanexpertwithanalysis,andcollaborateacrossworkflowsinwaysthatshiftdecision-makingauthority.Thistool-coworkerdualitybreaksdowntraditionalmanagementlogic,whichassumesthattechnologyeithersubstitutesorcomplements,auto-matesoraugments,islabororcapital,orisatooloraworker,butnotallatonce.Organizationsnowfaceanunprecedentedchallenge:managingasinglesystemthatdemandsbothhumanresourceapproachesandassetmanagementtechniques.
Theseparationoftechnologyandstrategyinsidemostorganizationsexacerbatesthischallenge.Technologyexecutivesfocusontechnologyissues,makingpilot,vendor,orinfrastructuredecisions.Strategicexecutivesfocusonmarkets,competition,andpeople.ButagenticAImakesthatseparationuntenable.Itsimultaneouslyinfluencesthedesignofprocesses,thestructureofroles,theallocationofdecisionrights,andthecultureofaccountability.
ABOUTTHERESEARCH
ThisreportpresentsfindingsfromtheninthannualglobalresearchstudyonartificialintelligenceandbusinessstrategybyMITSloanManagementReviewandBostonConsultingGroup.Inspring2025,wefieldedaglobalsurveyandsubsequentlyanalyzedrecordsfrom2,102respondentsrepresentingmorethan21industriesand116countries.Wealsointerviewed11executivesleadingAIinitiativesinabroadrangeofcompaniesandindustries,includingfinancialservices,technology,retail,energy,andhealthcare.
OurresearchexaminesthespeedofagenticAIadoptioninsideorganizations,whichhasoutpacedtheadoptionoftraditionalandgenerativeAI.ExploringhowagenticAIrelatestocapitalandlabor,thisreportoutlinesaseriesofresultanttensionsandofferssuggestionsfororganizationsseekingtoresolvethem.
1
TheEmergingAgenticEnterprise:HowLeadersMustNavigateaNewAgeofAI
2
MITSLOANMANAGEMENTREVIEW?BCG
TheEmergingAgenticEnterprise:HowLeadersMustNavigateaNewAgeofAI3
ATidalWaveofAdoption,aTrickleofStrategy
Despitethetechnology’swide-rangingimplications,organizationsarerapidlyadoptingagenticAI,wellbeforetheyhaveastrategyinplace.TheiradoptionoftraditionalAIhasclimbedto72%overthepasteightyears,accord-ingtooursurvey.(seefigure1.)GenerativeAIachieved70%adoptioninjustthreeyears.Injusttwoyears,agenticAIhasalreadyreached35%adoption,withanother44%oforganizationsplanningtodeployitsoon.Vendorsareacceleratingthistrendbyembeddingagenticcapabilitiesasfeaturesintheirofferings,causingorganizationstoimple-mentagenticAIbeforetheyhavedevelopedastrategicmanagementframework.
Theresultisagrowingstrategicrisk:AgenticAIisspread-ingacrossenterprisesfasterthanleaderscanredesignprocesses,assigndecisionrights,orrethinkworkforce
models.Ourresearch,basedon2,000-plusrespondentstoaglobalsurveyandinterviewswithleadingexecutives,findsthatorganizationshavemultipleoptionsforobtain-ingvaluefromagenticAI.Itofferspossibilitiesnotonlytoimprovecostefficiencybutalsotoexpandrevenue,accelerateinnovation,compresslearningcurves,andrestructureorganizations.Withoutastrategicapproachthatalignstheseobjectives,organizationsrisklimitingreturnsontheirinvestments.
TheExecutiveDilemma
AgenticAI’sdualnatureasbothatoolandcoworkercreatescompetingorganizationalpressuresthatman-agementframeworkscannotresolve.ITleaderswantpredictable,scalablesystemswithcleartechnicalspecifi-cations.CFOsneedinvestmentmodelswithmeasurablereturnsanddepreciationschedules.HRexecutivesrequire
PercentageoforganizationsusingAI
%
100
80
52%50%
40
20
0
201720182019202020212022202320242025
Source:MITSloanManagementReview-BCGglobalexecutivesurveys,2017-2025.
53%44%
70%72%
57%56%
46%
60
FIGURE1
TraditionalAIAdoptionContinuestoGrow
Since2023,thepercentageoforganizationspilotingordeployingAIsolutionshasrisen22percentagepoints.
performancemanagementframeworksandsupervisionprotocols.Businessleadersdemandbothefficiencyandadaptabilityfromthesamesystem.
Thesecompetingdemandsaren’timplementationchal-lenges.They’restrategicimperativesthatexposenewsourcesoforganizationaldifferentiation.Amongorganiza-tionswithextensiveagenticAIuse,wefindthat73%believeusingAIfundamentallyincreasestheirabilitytostandout,while76%oftheiremployeesbelieveitchangeshowindi-vidualsdifferentiatethemselvesfromcoworkers.
OrganizationsandindividualscanuseagenticAItodif-ferentiatethemselvesbecausetheycannowtakeadvan-tageofthewaysthatagenticAIdoesnotfittraditionalmanagementframeworks.Thesamesystemthatofferscostreductionsthroughtool-likeautomationalsoenablesrevenueexpansionthroughworkerlikeadaptability,innovationaccelerationthroughcontinuouslearning,andorganizationallearningthroughhuman-agentinter-actions.Butaccessingthesemultiplesourcesofvaluerequiresnavigatingoperationaltensionsthatnoexistingframeworkaddresses.
Thepathforwardrequiresunderstandingfouropera-tionaltensionsthatexposetheinadequacyoftraditionalmanagementapproachesandthenredesigningfunda-mentalprocesses—workdesign,governance,work-forceplanning,learning,andinvestment—toworkwithratherthanagainstagenticAI’sinherentduality.Thisreportoffersevidence-basedrecommendationsonhowtoproceed.
StrategicTensionsWhenAdoptingAgenticAI
Thecompetingpressuresexecutivesfacearen’tabstracttheoreticalproblems.Theymanifestasspecific,irrecon-cilableconflictsinday-to-dayoperations.Ourresearchidentifiedfourdistincttensionsthatemergewhenorga-nizationstrytointegrateagenticAIintoexistingwork-flows.Eachtensionrepresentsafundamentalclashbetweenestablishedmanagementprinciples,forcingleaderstochoosetoeitherapplyincompatibleapproachesordevelopentirelynew,hybridframeworks.Successfullynavigatingthischallengerequiresthatleadersmanagethefollowingtensions:
1.Sca1abi1ityversusadaptabi1ity.Toolsscale
predictably;workersadaptdynamically.Agentic
AI’sabilitytodobothsimultaneouslyrequiresneworganizationaldesignprinciples.
2.Experienceversusexpediency.Whenistherighttimetoinvestinagenticsystemsandhowshouldthoseinvestmentsbemade?Leadersarefacedwithbalancinglong-termcapabilitybuildingwithshort-termreturns.
WHYAGENTICAISPREADSSOFAST
TherapidadoptionofagenticAIalignsperfectlywiththediffu-sionofinnovationstheory,whichexplainswhysometechnol-ogiesspreadfasterthanothers.iAccordingtotheframework,innovationsdiffusemorequicklywhentheyofferaclearrelativeadvantage,arecompatiblewithexistingsystems,aresimpletotry,andhaveobservableresults.
AgenticAIexcelsonallfourdimensions.Itbuildsonthefamil-iarityofgenerativeAIthatorganizationshavealreadyadopted,integratesseamlesslyintowidelyusedplatforms,requiresmin-imalnewinfrastructureforexperimentationwithit,anddeliv-ersimmediate,visibleproductivitybenefits.AsChevron’schiefdataandanalyticsofficer,MargeryConnor,explains,“Withthecompanystandardizedonasinglevendor’splatform,morethanhalfoftheworkforcehasaccesstoAItools,and,byextension,accesstoagenticAI.”Theinfrastructureisalreadythere.
Thisbuilt-inavailabilitydramaticallyreducesbarrierstoadop-tion.Employeescanbeginusingagenticfeatureswithoutimplementingentirelynewsystems,whichencouragesorganicexperimentationacrosstheorganization.Asmorepeopleexpe-riencetangiblebenefits,adoptionacceleratesthroughwordofmouthandviademonstrationeffects—exactlywhatdiffusiontheorypredicts.
Theimplicationforleaders:AgenticAI’srapidspreadisn’tanaccident.It’shappeningbecausethetechnologyisdesignedtominimizeadoptionfriction.Thismeansthatcompetitivebene-fitswillcomenotfromearlyaccesstothetechnologybutfromsuperiororganizationaldesignaroundit.
4MITSLOANMANAGEMENTREVIEW?BCG
TheEmergingAgenticEnterprise:HowLeadersMustNavigateaNewAgeofAI5
3.Supervisionversusautonomy.Howdoyou
supervisesomethingdesignedtoworkautonomously?
Traditionaloversightmodelsassumeeitherfullhuman
controlorcompleteautomation,notsystemsthatrequiresomehumancontrolanddifferingdegreesofautomation.
4.Retrofitversusreengineer.When,andbyhowmuch,shouldorganizationschangeprocesses?Thatdecisionrequiresresourcesandattentionthatmostchange-managementframeworksdon’taddress.
Theorganizationsthatwillsucceedarethosethatrec-ognizeagenticAI’sdualnatureasafeature,notabug.Strategiesthatembracetheambiguityanddevelophybridapproachesratherthanforcingthesesystemsintoexistingmanagementcategoriesbenefitfromboththeirtool-likescalabilityandworkerlikeadaptability.
1.TheFlexibilityTension:ScalabilityVersusAdaptability
Humanworkersaremaximallyflexible.Theycanswitchtasks,learnnewskills,andadapttounexpectedsitua-tionswithminimalretraining.Toolsaremuchlessflexible.Machineryandinfrastructureexcelatspecificpurposesandscalepredictably,buttheycanstruggletoadapttochange.
AgenticAIsitsinbetween:moreadaptablethantoolsbut(currently)lessflexiblethanworkers.Howshouldorga-nizationsdesignprocesseswithintermediateflexibility?AgenticAI’sabilitytoscalepredictablyandadaptdynam-icallyrequiresneworganizationaldesignprinciplesthatdon’tfitneatlyintoexistingmanagementsystems.
IntheheartofGoodwillIndustries’bustlingsortingfacil-ity,ariverofdonationsflowsceaselesslywithachaoticmixofvintageT-shirts,designerjeans,andforgottenfabrics.Ateamofdedicatedworkerspainstakinglysiftsthroughthismountainoftextiles,butAIagentsareincreasinglyabletohelp.Thissystemisnotasimplecom-putervisionmachine,rigidlyprogrammedtorecognizeonlyafewspecificitems.Instead,itisaflexibleAIthatconstantlylearnsfromandadaptstotheever-changingstreamofgoods:Itcanlearntodistinguishbetweenacashmeresweaterandawoolblend,identifyararecol-lectiblefromacommontoy,andevenspotsubtlesignsofwearandtearthatmightmakeanitemunsuitableforresale.StevePreston,presidentandCEOofGoodwill,says,“Oursupplychainfrombeginningtoendisverycomplicatedandrequiresalotofhumanintervention,alotofdecisionpoints,andalotofjudgment.Sothroughout
OurresearchidentifiedfourdistincttensionsthatemergewhenorganizationstrytointegrateagenticAIintoexistingworkflows.
thatprocess,weseealotofopportunitiestoincorporateAIintheentireflowofgoods,thedecision-makingpro-cess,andmakingsurethateverythingwereceivefindsitsbesthomesomewhereinthecycle.”
AI’sRole
Coach
Mentor
Colleague
Rival
Boss
Assistant
GoodwillispilotingAItechnologythatcouldultimatelybeusedtosortbillionsofpoundsofdonationseachyear,
ensuringthateachitemfindsitswaytotherightplace,whetherit’saboutique,anonlinestore,orarecyclingfacil-ity.TheAI’sabilitytohandlecomplexjudgmenttasksisencouragingleaderstoreplaceadecades-old,human-centricworkflowwithnewprocesses.TheyhavebeguntodesignprocessesforandwithagenticAI.
13%
42%
12%
36%
11%
35
%
8%
26%
5%
18%
26%
61%
%05101520253035404550556065
NowIn3years
FIGURE2
AI’sRoleintheOrganization
OurdatashowssurveyrespondentsbelieveAIwillbecomemorelikeanassistant,coach,mentor,orcolleagueratherthanarivalorboss.
6MITSLOANMANAGEMENTREVIEW?BCG
TheEmergingAgenticEnterprise:HowLeadersMustNavigateaNewAgeofAI7
Asthecompositionofworkersshifts,deployingscalable,flexibleAIworkerscreatesastrategictensionforprocessdesignacrosstheenterprise.
AIsystemsalreadyactasassistants,colleagues,mentors,coaches,andevenasrivalsandbosses.MostofoursurveyrespondentsanticipatethatAIwillbecomemoreinvolvedineachoftheseroleswithinthreeyears.(seefigure2,page6.)Asthecompositionofworkersshifts,deployingscalable,flexibleAIworkerscreatesastrategictensionforprocessdesignacrosstheenterprise.Agenticsystemsmightworkbestinstandardizedenvironments,butover-standardizationcaneliminatetheirabilitytolearnanddevelophumanlikeadaptability—acapabilitythatcanhelporganizationshan-dleedgecasesandsystemfailures.Organizationsneedboththeefficiencyofstandardizedprocessesandtheflexibilityofhumanlikeimprovisation.
Thethreat:OrganizationsthatoptimizeforAIefficiencymissoutonAI’shumanlikeadaptiveresponsestosystemfailuresorunexpectedmarketshifts.
Theopportunity:CompaniesthatstriketherightbalancecanachievebothAI-drivenefficiencyandhuman-poweredadaptability,creatingstrategicbenefits.
2.TheInvestmentTension:ExperienceVersusExpediency
Traditionaltoolsrequirelargeupfrontcostsbutdeliverpredictablereturnsthroughestablisheddepreciationschedules.Humanworkersareanongoingvariableexpense,buttheirvalueappreciateswithexperienceandtraining.AgenticAIdefiesbothmodels,requiringsub-stantialinitialdevelopmentcostsandongoingvariablecosts,suchastrainingmodelsonnewdata.Whilemanytechnologysystemsrequireongoingmaintenance,agen-ticAIsystemssimultaneouslydepreciatethroughmodeldriftwhileappreciatingthroughfine-tuningandemergent
capabilities.ShouldinvestmentsinagenticAIbeviewedmorelikeinvestmentsintoolsorinworkers,orboth?
Directlyaddressingthatquestionrevealstwocriticalinvestmenttensionsthatchallengeconventionalfinan-cialplanning:
Timing:Themoving-targetprob1em.AIsystemsareevolvingquickly,creatinguncertaintyaboutwhenanorga-nizationshouldmakesignificantinvestmentsinthem.Adopttooearlyandrisktechnologicalobsolescence;waittoolongandriskstrategicbenefits.AsJeffReihl,execu-tivevicepresidentandtechnologychairmanatLexisNexisLegal&Professional,observes,“Thistechnologyischangingsofast,wemighthavetodoaquickcatch-up.”Chevron’schiefdataandanalyticsofficer,MargeryConnor,echoesthissentiment,describingtheneedtoremainadap-tivetoemergingtoolsandupdates:“Thefast-paceddevel-opmentofagenticAIrequiresorganizationstobeagilewhileconsistentlyupholdingtheirdataandAIgovernancestandards,”shesays.
Unliketraditionaltoolswithpredictableupgradecycles,agenticAIrequirescontinuousadaptationandlearning.Standardnetpresentvaluecalculationsfailwhenthemostvaluableapplicationshaven’tbeenconceivedyet,andconventionaltimingmodelscan’taccountforthespeedoftechnologicalevolution.Plus,applyingconventionalreplacementschedulesrisksrapidvaluedecayassystemsfallbehindthetechnologicalcurve.
Size:P1atformsversuspointso1utions.Largeorga-nizationsfaceafundamentalchoice:investheavilyincomprehensiveAIplatformsorpursuesmaller,targetedpointsolutions.Thescaleofrequiredinvestmentforeach
approachcanvarydramatically,makingitdifficulttoaccu-ratelygaugeupfrontandcontinuingcosts.
Platforminvestmentsdemandsubstantialupfrontcom-mitmentswithuncertainreturns.AtCapitalOne,PremNatarajan,executivevicepresident,chiefscientist,andheadofenterpriseAI,describesbuilding“dozensofusecasesatscale”fromasingle,substantialplatforminvest-ment.ThefullimpactofCapitalOne’sstrategycanbeassessedthroughthelensesoftechnologyexploitationandexploration.Similarly,WalterSun,seniorvicepresi-dentandglobalheadofAIatSAP,explainsthatcreating“agenerativeAIhub”allowsforfulllife-cyclemanagementoflargelanguagemodels,whereasbuildingLLMsindivid-uallyintoisolatedapplicationsrequiresthecostlyintegra-tionoflegacysystemsbeforeanyreturnsmaterialize.SAPfocusedonthevaluetothedeveloperecosystemandusedthattodeterminewhatwouldbeasufficientreturnfromhavingaplatform,Sunnotes.
InvestinginpointsolutionsoffersmorepredictablecostsandmeasurablereturnsbutrisksmissingthecompoundvaluethatemergeswhenAIcapabilitiesareintegratedacrossbusinessfunctions.Organizationsthatchoosethispathmayfindthemselvesmanagingdozensofdiscon-nectedAItoolswithouttheinfrastructuretoscaleoradapt.
Organizationsinvestingsolelyinoneapproach,whetherhuman-in-the-loopsystemsorfullyautonomousagents,missthecompoundvaluecreatedbyagenticAI’scon-tributionsinmultipledecision-makingscenarios.Eachautonomylevelservesdifferentrisktolerancesandbusi-nesscontexts,butmeasuringROIinisolationobscuresthestrategicvalueofadiversifiedAIportfolio.
AgenticAI’shybridfeaturesmakeitdifficulttoaccu-ratelymeasureinvestmentreturnsovermeaningfultimeframesoreventoassessupfrontinvestmentrequirements.CompaniesmeasuringagenticAIreturnsthroughconven-tionaldepreciationschedulessystematicallyundervaluethecontinuous-learningandemergentcapabilitiesthesesystemsgenerate,failingtoaccountforsignificantportionsofactualvaluecreation.
Thethreat:Organizationsthatapplytraditionalinvest-mentframeworkstoagenticAIsystematicallyunderinvestincontinuouslearningandadaptation,leadingtorapidvaluedecaywhilethecompoundreturnsavailablefromintegratedAIecosystemsaremissed.
Theopportunity:CompaniesthatembracehybridinvestmentmodelsanddiversifiedAIportfolioscancre-atecompoundingreturnsastheirsystemslearn,adapt,andgenerateunforeseencapabilitiesacrossmultipleautonomylevelsandbusinesscontexts.Thewindowforestablishingthisstrategicadvantageisnarrowingascompetitivepres-suresintensifyandtechnologicalevolutionaccelerates.Thequestionisn’twhethertoresolvethesetensionsbut,rather,howquicklyorganizationsadapttheirinvestmentframeworkstomatchtherealityofagenticAI.
3.TheControlTension:SupervisionVersusAutonomy
Toolsarefullyownedandcontrolled,behavingpredict-ablyoncedeployed.Workersmustbemanagedthroughcontracts,incentives,andoversightbecausehumanshaveautonomyandmaypursuedivergentgoals.AgenticAIrequiressupervisionandmanagementlikeaworkerdoes
Unliketraditionaltoolswithpredictableupgradecycles,agenticAIrequires
continuousadaptationandlearning.
8MITSLOANMANAGEMENTREVIEW?BCG
TheEmergingAgenticEnterprise:HowLeadersMustNavigateaNewAgeofAI9
+55%
37%
57%
+179%
14%
39%
+250%
10%
35%
0102030405060
NowIn3yearsPercentageofrespondentswhostronglyagreeoragreewitheachstatement.
AIsystems workwithambiguousinputs
AIsystemsworkindependently fromhumans
AIsystemshavedecision-makingauthority
FIGURE3
OrganizationsAnticipateContinuedIncreasesinAIAutonomy
SurveyrespondentsaretwotothreetimesmorelikelytoexpectAIsystemstoworkindependentlyfromhumansandhavedecision-makingauthorityinthreeyearscomparedtotoday.
becauseitsoutputscanbeunpredictable,eventhoughorganizationsownitlikeanautonomoustool.Howcanorganizationsdesignprocessestoeffectivelysuperviseanagentthatalsoworksautonomously?(seefigure3.)
Aprocessthatincludessupervisioninherentlykeepshumansinvolvedindecision-makingprocesses.Chevron’sConnornotes,“Wealwayshaveahumaninthelooptoreviewandanalyzetheoutputsowecandeterminewhetheritmakessenseornot.”ChandraKapireddy,for-merheadofgenerativeAI,machinelearning,andanalyticsatTruistBank,says,“Ifyoulookatthefinancialservicesindustry,Idon’tthinkthereisanyusecasethatisactually
customer-facing,affectingthedecisionsthatwewouldmakewithoutahumanintheloop.”1
Despiteowningthetechnology,organizationsmusttreatagenticAIsystemswiththesameoversighttypicallyreservedforhumanemployees.
Butatthesametime,organizationswantthebenefitsofscalethatAIagentscanofferwhileavoidingthebottle-necksthathumanoversightcouldcreate.Oneleaderwespokewithasked,“Howdoyoumakesurethatyouhavetherightsetofcontrolsinplace?We’recallingithuman-in-the-loop,or‘human-out-of-the-loop’forsomeofourlow-riskusecases.”Thedecisiontomovetohuman-out-
of-the-loopforlower-riskusecasesinvolvescontext-dependentassessmentsofrisk.Unlikeasimpletoolwithafixedfunction,agenticAIoperateswithinacomplexenvironmentwhereitsactionscanhaveunintendedconse-quences.Thatmeansorganizationsmustcraftpoliciesthatsetboundariesfordecision-makingandactiontoserveassafeguardssothatorganizationalbehaviorsalignwithstrategicobjectives,andnegativeoutcomesareprevented.Thisisanalogoustosettingpoliciesandprovidingover-sightforhumanemployees.SunatSAPdescribesbuildingagenerativeAIhubforthispurpose:“Throughthat,wecanthenconnecttodifferentlargelanguagemodels.Butwealsohavetheability,then,toputintheguardrailsforallthebusinessapplications.Wecanputinourownanalytics.Wecanputinourownsecurity,ourprivacy,ourcompli-ance,andsoon.”TheneedforthesecontrolshighlightsthefactthatAIisnotafullypredictabletoolbutanagentthatmanagersmustguideandconstrain.
Whenatoolmalfunctions,it’sadefect.Whenacoworkermakesamistake,it’samanagementandlearningoppor-tunity.ManagerscanapplythiscoworkermindsettoAI.RebeccaFinlay,CEOatthePartnershiponAI,arguesthatcompaniesneedtobemoretransparentabouttheirAIfailures:“Iwouldloveforustobeinapositionwherewecouldsharemoreaboutthingsthatgowrong,becauseinthatsharing,welearn.”ThisapproachtreatsAInotasaninfallibletoolbutasanagentwhoseerrorsmustbeunder-stood,managed,andlearnedfrom.Thelearningprocessparallelshoweffectiveteamshandlehumanerror.
Thethreat:OrganizationsthatfailtodevelopappropriategovernanceframeworksforagenticAImayfacecompli-ancefailures,misalignedoutputs,orrunawaysystemsthatdamagebusinessoperations.
Theopportunity:Companiesthatmastertheartofman-agingartificialcolleaguescanscalespecializedcapabilitieswithoutthetraditionalc
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建泉州洛江區(qū)司法局招聘編外工作人員2人備考題庫(kù)附答案
- 2026重慶沙坪壩區(qū)磁器口社區(qū)衛(wèi)生服務(wù)中心招聘1人備考題庫(kù)附答案
- 2026年井岡山市城投控股集團(tuán)有限公司面向社會(huì)公開(kāi)招聘參考題庫(kù)必考題
- 2025年山西醫(yī)科大學(xué)招聘真題(行政管理崗)
- 四川省南充市閬中中學(xué)校2025-2026學(xué)年高三上學(xué)期1月月考語(yǔ)文試題(含答案)
- 2026年1月福建廈門(mén)市生態(tài)環(huán)境局補(bǔ)充非在編人員招聘2人備考題庫(kù)及完整答案詳解一套
- 2025甘肅天水市甘谷縣公安局招聘警務(wù)輔助人員50人備考題庫(kù)及答案詳解(易錯(cuò)題)
- 2026交通運(yùn)輸部所屬事業(yè)單位統(tǒng)一招聘160人備考題庫(kù)(第四批廣東60人)帶答案詳解
- 2026云南省教育廳招募基礎(chǔ)教育銀齡教師760人備考題庫(kù)及答案詳解1套
- 冷鏈物流多式聯(lián)運(yùn)服務(wù)平臺(tái)2025年技術(shù)創(chuàng)新與冷鏈配送效率可行性報(bào)告
- 學(xué)校6S管理培訓(xùn)
- DB15-T 4031-2025 建設(shè)項(xiàng)目水資源論證表編制導(dǎo)則
- 2025-2030國(guó)學(xué)啟蒙教育傳統(tǒng)文化復(fù)興與商業(yè)模式探索報(bào)告
- 2025年事業(yè)單位考試(醫(yī)療衛(wèi)生類(lèi)E類(lèi))職業(yè)能力傾向測(cè)驗(yàn)試卷及答案指導(dǎo)
- 2025年江蘇省高考?xì)v史真題(含答案解析)
- 2025-2030中國(guó)綠色甲烷行業(yè)發(fā)展現(xiàn)狀與未來(lái)發(fā)展前景預(yù)測(cè)報(bào)告
- 系統(tǒng)解剖學(xué)章節(jié)練習(xí)題及答案
- (人教版)初中物理九年級(jí) 第二十章綜合測(cè)試及答案03
- 人教版九年級(jí)歷史上冊(cè)期末復(fù)習(xí)知識(shí)點(diǎn)考點(diǎn)背誦提綱
- 2025年電動(dòng)三輪車(chē)銷(xiāo)售與農(nóng)村市場(chǎng)拓展合同
- 公路水運(yùn)工程施工安全風(fēng)險(xiǎn)評(píng)估指南 第6部分:航道工程JT∕T 1375
評(píng)論
0/150
提交評(píng)論